×

zbMATH — the first resource for mathematics

Some properties of double point schemes. (English) Zbl 0462.14021

MSC:
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
14J17 Singularities of surfaces or higher-dimensional varieties
14B05 Singularities in algebraic geometry
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Altman and S. Kleiman : Introduction to Grothendieck duality theory . Lecture Notes in Mathematics 146 (1970) Springer-Verlag, Berlin. · Zbl 0215.37201 · doi:10.1007/BFb0060932
[2] I.V. Dolgachev : On the purity of the set of singular points of a morphism of schemes . Soviet Math. Dokl. 10 (1969) 1177-1179. · Zbl 0191.51801
[3] W. Fulton : Rational equivalence on singular varieties . Inst. Hautes Études Sci. Publ. Math. 45 (1975) 147-167. · Zbl 0332.14002 · doi:10.1007/BF02684300 · numdam:PMIHES_1975__45__147_0 · eudml:103938
[4] W. Fulton : A note on residual intersections and the double point formula . Acta Math. 140 (1978) 93-101. · Zbl 0388.14004 · doi:10.1007/BF02392305
[5] A. Grothendieck : Elements de géométrie algébrique, chapitre 4, quatrième partie . Inst. Hautes Études Sci. Publ. Math. 32 (1967). · Zbl 0153.22301 · numdam:PMIHES_1967__32__5_0 · eudml:103873
[6] A. Grothendieck : Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux (SGA 2) . North-Holland Publishing Company, Amsterdam, 1968. · Zbl 0197.47202
[7] A. Holme : Deformation and stratification of secant structure . Lecture Notes in Mathematics 687 (1978) 60-91. Springer-Verlag, Berlin. · Zbl 0408.14007 · doi:10.1007/BFb0062928
[8] B. Iversen : Numerical invariants and multiple planes . Amer. J. Math. 92 (1970) 968-996. · Zbl 0232.14013 · doi:10.2307/2373405
[9] G. Kempf and D. Laksov : The determinantal formula of Schubert calculus . Acta Math. 132 (1974) 153-162. · Zbl 0295.14023 · doi:10.1007/BF02392111
[10] S.L. Kleiman : The transversality of a general translate . Compositio Math. 28 (1974) 287-297. · Zbl 0288.14014 · numdam:CM_1974__28_3_287_0 · eudml:89215
[11] S.L. Kleiman : The enumerative theory of singularities. Real and complex singularities , Oslo 1976, 297-396. (P. Holm, editor) Sijthoff and Noordhoff International Publishers. Groningen, 1978. · Zbl 0385.14018
[12] D. Laksov : Residual intersections and Todd’s formula for the double locus of a morphism . Acta Math. 140 (1978) 75-92. · Zbl 0388.14006 · doi:10.1007/BF02392304
[13] A. Lascoux : Calcul de certains polynômes de Thom . C.R. Acad. Sci. Paris Sér. A 278 (1974) 889-891. · Zbl 0281.14008
[14] I.R. Porteous : Blowing up Chern classes . Proc. Cambridge Phil. Soc. 56 (1960) 118-124. · Zbl 0166.16701
[15] J. Roberts : Generic projections of algebraic varieties . Amer. J. Math. 93 (1971) 191-214. · Zbl 0212.53801 · doi:10.2307/2373457
[16] J. Roberts : Singularity subschemes and generic projections . Trans. Amer. Math. Soc. 212 (1975) 229-268. · Zbl 0314.14003 · doi:10.2307/1998623
[17] L. Roth : On plane-forms in four dimensions . Proc. London Math. Soc. (2) 33 (1932) 115-144. · Zbl 0003.07002 · doi:10.1112/plms/s2-33.1.115
[18] L. Roth : Some formulae for primals in four dimensions . Proc. London Math. Soc. (2) 35 (1933) 540-550. · Zbl 0007.22601 · doi:10.1112/plms/s2-35.1.540
[19] L. Roth : Algebraic threefolds . Springer-Verlag, Berlin, 1955. · Zbl 0066.14704
[20] F. Ronga : Le calcul des classes duales aux singularités de Boardman d’ordre deux . Comment. Math. Helv. 47 (1974) 15-35. · Zbl 0236.58003 · doi:10.1007/BF02566786 · eudml:139497
[21] F. Sergeraert : Expression explicite de certains polynômes de Thom . C.R. Acad. Sci. Paris Sér. A 276 (1973) 1661-1663. · Zbl 0257.57009
[22] G. Washnitzer : Geometric Syzygies . Amer. J. Math. 81 (1959) 171-248. · Zbl 0115.38502 · doi:10.2307/2372854
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.