Gidas, B.; Spruck, J. A priori bounds for positive solutions of nonlinear elliptic equations. (English) Zbl 0462.35041 Commun. Partial Differ. Equations 6, 883-901 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 12 ReviewsCited in 442 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 35B45 A priori estimates in context of PDEs Keywords:a priori bounds; nonnegative solutions; nonlinear second order problem; elliptic linear part in divergence form; Liouville type result Citations:Zbl 0423.35048 PDF BibTeX XML Cite \textit{B. Gidas} and \textit{J. Spruck}, Commun. Partial Differ. Equations 6, 883--901 (1981; Zbl 0462.35041) Full Text: DOI OpenURL References: [1] Ambrosetti A., J. Funct. Anal. 14 pp 349– (1973) · Zbl 0273.49063 [2] Brézis H., Commun. in P. D. E. 2 pp 601– (1977) · Zbl 0358.35032 [3] Caffareli L. Gidas B. Spruck J. to appear [4] DeFigueiredo D., C. R. Acad. Sc. 290 pp 217– (1980) [5] Gidas B., Commun. Math. Phys. 68 pp 209– (1979) · Zbl 0425.35020 [6] Gidas B., Commun. Pure and Appl. Math. (1981) [7] Morrey C.B., Multiple Integrals in the Calculus of Variations (1966) · Zbl 0142.38701 [8] Nussbaum R.D., J. Math. Analy. and Appl. 51 pp 461– (1975) · Zbl 0304.35047 [9] Turner R.E.L., Duke Math. J. 41 pp 759– (1974) · Zbl 0294.35033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.