×

Time asymptotics for some degenerate models of evolution of systems with an infinite number of particles. (English) Zbl 0462.60097


MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory

Citations:

Zbl 0424.60096
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] V. I. Arnol’d, Ergodic Problems of Classical Mechanics, W. A. Benjamin (1968).
[2] R. C. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley (1975). · Zbl 0984.82500
[3] P. Billingsley, Ergodic Theory and Information [Russian translation], Mir, Moscow (1969). · Zbl 0184.43301
[4] P. Billingsley, Convergence of Probability Measures, Wiley (1968). · Zbl 0172.21201
[5] A. A. Borovkov, ?Convergence of measures and stochastic processes,? Usp. Mat. Nauk,31, No. 2, 3?68 (1976). · Zbl 0372.60009
[6] K. L. Volkovysskii and Ya. G. Sinai, ?Ergodic properties of an ideal gas with an infinite number of degrees of freedom,? Funkts. Anal. Prilozhen.,5, No. 3, 19?21 (1971). · Zbl 0243.30002
[7] I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes, Springer-Verlag (1974). · Zbl 0132.37902
[8] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley (1968). · Zbl 0056.36001
[9] B. M. Gurevich and V. I. Oseledets, ?Some mathematical problems related to the nonequilibrium statistical mechanics of an infinite number of particles,? in: Theory of Probability. Mathematical Statistics. Theory of Cybernetics, Vol. 14 (Itogi Nauki i Tekh. VINITI AN SSSR), Moscow (1977), pp. 5?39.
[10] B. M. Gurevich, Ya, G. Sinai, and Yu. M. Sukhov, ?On invariant measures of dynamical systems of one-dimensional statistical mechanics,? Usp. Mat. Nauk,28, No. 5, 45?82 (1973). · Zbl 0321.28011
[11] B. M. Gurevich and Yu. M. Sukhov, ?Stationary solutions of the chain of Bogolyubov equations in classical statistical mechanics,? Dokl. Akad. Nauk SSSR,223, No. 2, 276?279 (1975). · Zbl 0361.60090
[12] B. M. Gurevich and Yu. M. Sukhov, ?Invariant measures of Hamiltonian systems with an infinite number of degrees of freedom and stationary solutions of the chain of Bogolyubov equations,? Usp. Mat. Nauk,30, No. 6, 199?200 (1975).
[13] B. M. Gurevich and Yu. M. Sukhov, ?The time evolution of Gibbs states in one-dimensional classical statistical mechanics,? Dokl. Akad. Nauk SSSR,242, No. 2, 276?279 (1978). · Zbl 0431.46054
[14] R. L. Dobrushin, ?On the Poisson law for the distribution of particles in space,? Ukr. Mat. Zh.,8, No. 2, 127?134 (1956).
[15] R. L. Dobrushin, ?Passage to the limit under the sign of information and entropy,? Teor. Veroyatn. Ee Primen.,5, No. 1, 29?37 (1960).
[16] R. L. Dobrushin, ?Description of a random field by means of conditional probabilities and the condition of its regularity,? Teor. Veroyatn. Ee Primen.,13, No. 2, 201?229 (1968).
[17] R. L. Dobrushin, ?Gibbs random fields. The general case,? Funkts. Anal. Prilozhen.,3, No. 1, 27?35 (1969).
[18] R. L. Dobrushin, ?Defining systems of random variables by means of conditional distributions,? Teor. Veroyatn. Ee Primen.,15, No. 3, 469?497 (1970).
[19] R. L. Dobrushin, ?Gibbs random fields for particles without a solid core,? Teor. Mat. Fiz.,4, No. 1, 101?118 (1970). · Zbl 1183.82024
[20] R. L. Dobrushin, ?Conditions for the absence of phase transitions in one-dimensional classical systems,? Mat. Sb.,93, No. 1, 29?49 (1974).
[21] R. L. Dobrushin, ?The asymptotic behavior of Gibbs distributions for lattice systems depending on the shape of the container,? Teor. Mat. Fiz.,12, No. 1, 115?134 (1972).
[22] R. L. Dobrushin and R. A. Minlos, ?Polynomials of linear random functions,? Usp. Mat. Nauk,32, No. 2, 67?122 (1977). · Zbl 0378.60024
[23] R. L. Dobrushin and Yu. M. Sukhov, ?Limit probability distributions for the simplest dynamical systems of statistical mechanics,? Texts of Reports of the Second Vilnius Conference on Probability Theory and Mathematical Statistics, Vilnius, Vol. 2 (1977), pp. 123?126.
[24] J. L. Doob, Stochastic Processes, Wiley (1953).
[25] G. M. Zaslavskii and B. V. Chirikov, ?Stochastic instability of nonlinear systems,? Usp. Fiz. Nauk, No. 1, 105 (1971).
[26] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Related Quantities [in Russian], Nauka, Moscow (1965).
[27] A. B. Katok, Ya. G. Sinai, and A. M. Stepin, ?The theory of dynamical systems and general groups of transformations with invariant measure,? in: Mat. Anal., Vol. 13 (Itogi Nauki i Tekh. VIN1TI AN SSSR), Moscow (1977), pp. 129?262.
[28] O. K. Kozlov, ?The Gibbs description of point random fields,? Teor. Veroyatn. Ee Primen.,21, No. 2, 348?365 (1976).
[29] O. K. Kozlov, ?Consistent systems of conditional distributions of a random field,? Probl. Peredachi Inf.,13, No. 2, 77?90 (1977).
[30] O. E. Lanford, III, ?The evolution in time of large classical systems,? in: Gibbs States in Statistical Physics [Russian translation], Mir, Moscow (1978).
[31] R. A. Minlos, ?The limit Gibbs distribution,? Funkts. Anal. Prilozhen.,1, No. 2, 60?73 (1967). · Zbl 0245.60081
[32] R. A. Minlos, ?Regularity of the limit Gibbs distribution,? Funkts. Anal. Prilozhen.,1, No. 3, 40?54 (1967). · Zbl 0245.60081
[33] R. A. Minlos, ?Lectures on statistical physics,? Usp. Mat. Nauk,23, No. 1, 133?190 (1968). · Zbl 0165.58501
[34] R. A. Minlos and A. Khaitov, ?Limit equivalence of thermodynamical ensembles in the case of onedimensional systems,? Tr. Mosk. Mat. Obshch.,32, 148?186 (1975).
[35] J. Moser and W. T. Kyner, Lectures on Hamiltonian Systems, Amer. Math. Soc. (1968).
[36] B. S. Nakhapetyan, ?Strong mixing of a Gibbs random field with discrete argument and some of its applications,? Izv. Akad. Nauk Arm. SSR, Ser. Mat.,3 (1975).
[37] D. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale Univ. Press (1974). · Zbl 0296.28016
[38] E. Prezutti, M. Pulvirenti, and B. Tirozzi, ?The evolution in time of infinite classical systems with a singular, long-range pair potential,? in: Gibbs States in Statistical Physics [Russian translation], Mir, Moscow (1978), pp. 219?240.
[39] C. J. Preston, Gibbs States on Countable Sets, Cambridge Univ. Press (1974). · Zbl 0297.60054
[40] V. A. Rokhlin, ?Lectures on the entropy theory of transformations with invariant measure,? Usp. Mat. Nauk,12, No. 5, 3?56 (1967).
[41] D. Ruelle, Statistical Mechanics: Rigorous Results, W.A.Benjamin (1974).
[42] Ya. G. Sinai, ?On a ?physical? system having positive entropy,? Vestn. Mosk. Gos. Univ.,5, 6?12 (1963). · Zbl 0126.41502
[43] Ya. G. Sinai, ?On justification of the ergodic conjecture for a dynamical system of statistical mechanics,? Dokl. Akad. Nauk SSSR,153, No. 6, 1261?1264 (1963).
[44] Ya. G. Sinai, ?Dynamical systems with elastic reflections. Ergodic properties of scattered billiards,? Usp. Mat. Nauk,25, No. 2, 141?192 (1970). · Zbl 0252.58005
[45] Ya. G. Sinai, ?Ergodic properties of a gas of one-dimensional hard spheres with an infinite number of degrees of freedom,? Funkts. Anal. Prilozhen.,6, No. 1, 41?50 (1972). · Zbl 0257.60036
[46] Ya. G. Sinai, ?Construction of the dynamics in one-dimensional systems of statistical mechanics,? Teor. Mat. Fiz.,11, No. 2, 248?258 (1972).
[47] Yu. M. Sukhov, ?The matrix method for continuous systems of classical statistical mechanics,? Tr. Mosk. Mat. Obshch.,24, 175?200 (1971). · Zbl 0367.60117
[48] G. Uhlenbeck and G. Ford, Lectures in Statistical Mechanics, Amer. Math. Soc. (1974). · Zbl 0111.43802
[49] M. Aizenman, S. Goldstein, and J. L. Lebovitz, ?Ergodic properties of an infinite one-dimensional hard rod system,? Commun. Math. Phys.,39, No. 4, 289?301 (1975). · Zbl 0352.60073
[50] V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, W. A. Benjamin (1968). · Zbl 0167.22901
[51] R. L. Dobrushin and J. Fritz, ?Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction,? Commun. Math. Phys.,55, No. 3, 275?292 (1977). · Zbl 0987.82502
[52] R. L. Dobrushin and J. Fritz, ?Non-equilibrium dynamics of two-dimensional infinite particle systems with singular interaction,? Commun. Math. Phys.,57, No. 1, 67?81 (1977). · Zbl 0987.82502
[53] Yu. M. Suhov, ?On the problem of the mathematical foundation of the Gibbs postulate in classical statistical mechanics,? Lect. Notes Phys.,80, 325?340 (1978).
[54] J. Fritz, ?Generalization of McMillan’s theorem to random set functions,? Stud. Sci, Math. Hung.,5, 369?394 (1970).
[55] G. Gallavotti and S. Miracle-Sole, ?Absence of phase transitions in hard-core one-dimensional systems with long-range interactions,? J. Math. Phys.,11, No. 1, 147?155 (1970).
[56] S. Goldstein, ?Space-time ergodic properties of systems of infinitely many independent particles,? Commun. Math. Phys.,39, No. 4, 303?327 (1975). · Zbl 0361.60088
[57] S. Goldstein and J. L. Lebowitz, ?Ergodic properties of an infinite system of particles moving independently in a periodic field,? Commun. Math. Phys.,37, No. 1, 1?18 (1974).
[58] S. Goldstein, J. L. Lebowitz, and M. Aizenman, ?Ergodic properties of infinite systems,? Lect. Notes Phys.,38, 112?144 (1975). · Zbl 0316.28008
[59] B. M. Gurevich and Yu. M. Suhov, ?Stationary solutions of the Bogoliubov hierarchy equations in classical statistical mechanics. I,? Commun. Math. Phys.,49, No. 1, 69?96 (1976).
[60] B. M. Gurevich and Yu. M. Suhov, ?Stationary solutions of the Bogoliubov hierarchy equations in classical statistical mechanics. II,? Commun. Math. Phys.,54, No, 1, 81?96 (1977). · Zbl 1173.82302
[61] B. M. Gurevich and Yu. M. Suhov, ?Stationary solutions of the Bogoliubov hierarchy equations in classical statistical mechanics. III,? Commun. Math. Phys.,56, No. 3, 225?236 (1977).
[62] T. E. Harris, ?Diffusion with ?collisions? between particles,? J. Appl. Probab.,2, No. 2, 323?338 (1965). · Zbl 0139.34804
[63] M. Hénon and C. Heiles, ?The applicability of the third integral of motion in some numerical experiments,? Astronomical J.,69, No. 1, 73?79 (1964).
[64] O. Kallenberg, Random Measures, London-New York-San Francisco (1976).
[65] O. Kallenberg, ?On the asymptotic behavior of line processes and systems of noninteracting particles,? Z. Wahr. Verw. Gebiete,43, No. 1, 65?95 (1978). · Zbl 0366.60086
[66] J. Kerstan, K. Matthes, and J. Mecke, Infinitely Divisible Point Processes, Wiley (1978). · Zbl 0383.60001
[67] O. E. Lanford, III, ?The classical mechanics of one-dimensional systems of infinitely many particles. I. An existence theorem,? Commun. Math. Phys.,9, No. 3, 176?191 (1968). · Zbl 0164.25401
[68] O. E. Lanford, III, ?The classical mechanics of one-dimensional systems of infinitely many particles. II. Kinetic theory,? Commun. Math. Phys.,11, No. 4, 257?292 (1969). · Zbl 0175.21401
[69] O. E. Lanford, III, ?Ergodic theory and approach to equilibrium for finite and infinite systems,? Acta Phys. Austr., Suppl. No. 10, 619?639 (1973).
[70] O. E. Lanford, III, ?Entropy and equilibrium states in classical statistical mechanics,? Lect. Notes Phys.,20, 1?113 (1973).
[71] O. E. Lanford, III and D. Ruelle, ?Observables at infinity and states with short-range correlations in statistical mechanics,? Commun. Math. Phys.,13, No. 3, 194?215 (1969).
[72] A. Lenard, ?Correlation functions and the uniqueness of the state in classical statistical mechanics,? Commun. Math. Phys.,30, No. 1, 35?44 (1973).
[73] A. Lenard, ?States of classical statistical mechanical systems of infinitely many particles. I,? Arch. Rat. Mech. Anal.,50, No. 3, 219?239 (1975).
[74] A. Lenard, ?States of classical statistical mechanical systems of infinitely many particles. II,? Arch. Rat. Mech. Anal.,50, No. 3, 241?256 (1975).
[75] P. Mayor and D. Szasz, ?On the effect of collisions on the motion of an atom in R1,? Preprint of the Math. Inst. Hungarian Acad. Sci., No. 40/1979, Budapest, Jan. (1979).
[76] O. de Pazzis, ?Ergodic properties of a semi-infinite hard rods system,? Commun. Math. Phys.,22, No. 2, 121?132 (1971). · Zbl 0236.60071
[77] C. Preston, ?Random fields,? Lect. Notes Math.,534 (1976).
[78] D. Robinson and D. Ruelle, ?Mean entropy of states in classical statistical mechanics,? Commun. Math. Phys.,5, No. 4, 288?300 (1967). · Zbl 0144.48205
[79] D. Ruelle, ?Correlation functions of classical gases,? Ann. Phys.,25, No. 1, 109?120 (1963).
[80] D. Ruelle, ?Cluster property of the correlation functions of classical gases,? Rev. Mod. Phys.,36, No. 2, 580?584 (1964).
[81] D. Ruelle, ?States of classical statistical mechanics,? J. Math. Phys.,8, No. 8, 1657?1668 (1967). · Zbl 0154.46503
[82] D. Ruelle, ?Superstable interactions in classical statistical mechanics,? Commun. Math. Phys.,18, No. 2, 127?159 (1970). · Zbl 0198.31101
[83] D. Ruelle, Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley, Reading, Mass. (1978).
[84] S. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics, Springer-Verlag, Berlin-Heidelberg-New York (1971). · Zbl 0312.70017
[85] S. Sternberg, Celestial Mechanics, I, II, W. A. Benjamin, New York (1969).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.