zbMATH — the first resource for mathematics

On the convergence, invariance, and related aspects of a modification of Huang’s algorithm. (English) Zbl 0462.65042

65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
Full Text: DOI
[1] Huang, H. Y.,Unified Approach to Quadratically Convergent Algorithms for Function Minimization, Journal of Optimization Theory and Applications, Vol. 5, pp. 405-423, 1970. · Zbl 0194.19402 · doi:10.1007/BF00927440
[2] Dixon, L. C. W.,Quasi-Newton Algorithms Generate Identical Points, Mathematical Programming, Vol. 2, pp. 383-387, 1972. · Zbl 0245.65029 · doi:10.1007/BF01584554
[3] Dixon, L. C. W.,Quasi-Newton Techniques Generate Identical Points, II, Proof of Four New Theorems, Mathematical Programming, Vol. 3, pp. 345-358, 1972. · Zbl 0252.90053 · doi:10.1007/BF01585007
[4] Spedicato, E.,Stability of Huang’s Update for the Conjugate Gradient Method, Journal of Optimization Theory and Applications, Vol. 11, pp. 469-479, 1973. · Zbl 0254.49034 · doi:10.1007/BF00935660
[5] Powell, M. J. D.,On the Convergence of Variable-Metric Algorithms, Journal of the Institute of Mathematics and Applications, Vol. 7, pp. 21-36, 1971. · Zbl 0217.52804 · doi:10.1093/imamat/7.1.21
[6] Powell, M. J. D.,Some Properties of the Vartable-Metric Algorithms, Numerical Methods for Nonlinear Optimization, Edited by F. Lootsma, Academic Press, London, England, 1972.
[7] Jacobson, D. H., andOksman, W.,An Algorithm that Minimizes Homogeneous Functions of M Variables in N + 2 Iterations and Rapidly Minimizes General Functions, Journal of Mathematical Analysis and Applications, Vol. 38, pp. 535-552, 1972. · Zbl 0234.65063 · doi:10.1016/0022-247X(72)90067-4
[8] Jacobson, D. H., andPels, L. M.,A Modified Homogeneous Algorithm for Function Minimization, Journal of Mathematical Analysis and Applications, Vol. 46, pp. 533-541, 1974. · Zbl 0279.65049 · doi:10.1016/0022-247X(74)90259-5
[9] Kowalik, J. S., andRamakrishnan, K. G.,A Numerically Stable Optimization Method Based on a Homogeneous Function, Mathematical Programming, Vol. 11, pp. 50-66, 1976. · Zbl 0351.90052 · doi:10.1007/BF01580370
[10] Spedicato, E.,A Variable-Metric Method for Function Minimization Derived from Invariance to Nonlinear Scaling, Journal of Optimization Theory and Applications, Vol. 20, pp. 315-329, 1976. · Zbl 0316.90066 · doi:10.1007/BF00933626
[11] Spedicato, E.,Recent Development in the Variable-Metric Method for Nonlinear Unconstrained Optimization, Toward Global Optimization, Edited by L. C. W. Dixon and G. P. Szegö, North-Holland, Amsterdam, Holland, 1978.
[12] Boland, W. R., Kamgania, E. R., andKowalik, J. S.,A Conjugate Gradient Optimization Method Invariant to Nonlinear Scaling, Journal of Optimization Theory and Applications, Vol. 22, pp. 221-230, 1979. · Zbl 0396.49024 · doi:10.1007/BF00933228
[13] Kowalik, J. S., Kamgania, E. R., andBloand, W. R.,An Exponential Function as a Model for Conjugate Gradient Optimization Method, Journal of Mathematical Analysis and Applications, Vol. 67, pp. 476-482, 1979. · Zbl 0416.65045 · doi:10.1016/0022-247X(79)90037-4
[14] Avriel, M.,Nonlinear Programming, Prentice Hall, Englewood Cliffs, New Jersey, 1976.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.