Laborde, Patrick On visco-plasticity with hardening. (English) Zbl 0462.73015 Numer. Funct. Anal. Optimization 1, 315-339 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 Documents MSC: 74S30 Other numerical methods in solid mechanics (MSC2010) 35L60 First-order nonlinear hyperbolic equations 65Z05 Applications to the sciences 74C99 Plastic materials, materials of stress-rate and internal-variable type 49M30 Other numerical methods in calculus of variations (MSC2010) Keywords:uniqueness; evolution problem; contraction operator; fixed point is yield function; approximation of associated iterated convex sets; existence PDF BibTeX XML Cite \textit{P. Laborde}, Numer. Funct. Anal. Optim. 1, 315--339 (1979; Zbl 0462.73015) Full Text: DOI OpenURL References: [1] Duvaut, G. and Lions, J. L. 1972. ”Les inéquations en mécanique et en physique.”. Paris: Dunod. · Zbl 0298.73001 [2] Johnson. C., J. Math. Pures et Appl. 55 pp 431– (1976) [3] Laborde P., Thèse 3ème cycle (1976) [4] Laborde, P. 1976.Problèmes quasi-variationnels en Visco-plasticité avec écrouissage, A Vol. 283, 393Paris: C. R. Acad. Sc. · Zbl 0355.73039 [5] Mercier, B. 1976. ”Sur la théorie et l’analyse numérique de problèmes de plasticité”. Paris: Thèse. [6] Moreau J.J., Séminaire d’Analyse convexe [7] Ouoc Son, Nguyen. 1973. ”Contribution à la théorie macroscopique de l’élastoplasticité avec écrouissage.”. Paris: Thèse. [8] Sonntag Y., A 282, in: C. R. Acad. Sc. pp 1099– (1976) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.