Torsion algebraic cycles and a theorem of Roitman. (English) Zbl 0463.14002


14C25 Algebraic cycles
14C05 Parametrization (Chow and Hilbert schemes)
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
14F20 Étale and other Grothendieck topologies and (co)homologies
Full Text: Numdam EuDML


[1] S. Bloch and J. Murre : On the Chow groups of certain Fano three-folds (to appear). · Zbl 0426.14018
[2] S. Bloch and A. Ogus : Gersten’s conjecture and the homology of schemes . Ann. Éc. Norm. Sup. t. 7, fasc. 2, (1974). · Zbl 0307.14008
[3] P. Deligne : La conjecture de Weil , I, Publ. Math. I.H.E.S., 43 (1974) 273-307. · Zbl 0287.14001
[4] P. Deligne : Cohomologie Étale SGA41/2 , Lecture Notes in Math. 569, Springer Verlag (1977). · Zbl 0349.14008
[5] P. Griffiths : Some results on algebraic cycles on algebraic manifolds , Algebraic Geometry, Bombay Colloquium, Oxford University Press, 1969. · Zbl 0206.49803
[6] D. Quillen : Higher algebraic K-theory I , Proceedings of the Seattle Conference on K-theory, Lecture Notes in Math. 346, Springer Verlag. · Zbl 0292.18004
[7] A.A. Roitman : Private correspondence .
[8] P. Samuel : Relations d’équivalence en géométrie algébrique , Proceedings of the International Congress of Mathematicians, Cambridge, 470-487 (1958). · Zbl 0119.36901
[9] P. Deligne and N. Katz : SGA7 , Lecture Notes in Math. 349, Springer Verlag (1973).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.