×

zbMATH — the first resource for mathematics

Estimations \(L^ p\) des coefficients de représentation et opérateurs de convolution. (French) Zbl 0463.43003

MSC:
43A22 Homomorphisms and multipliers of function spaces on groups, semigroups, etc.
22E46 Semisimple Lie groups and their representations
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bargman, V, Irreductible unitary representations of the Lorentz groups, Ann. of math., 48, 2, 568-640, (1947) · Zbl 0045.38801
[2] Bruhat, F, Distribution sur un groupe localement compact et applications à l’étude des représentations des groupes p-adiques, Bull. soc. math. France, 43-77, (1961) · Zbl 0128.35701
[3] {\scN. Bourbaki}, “Éléments de mathématique, intégration,” Chaps. I-IV, Actualités scientifiques et littéraires, Hermann, Paris.
[4] Calderon, A.P, Intermediate spaces and interpolation, the complex method, Studia math., 24, 113-192, (1964) · Zbl 0204.13703
[5] Coifman, R; Weiss, G, Operators associated with representations of amenable groups: singular integrals induced by ergodic flows, the rotation method and multipliers, Studia math., 47, 285-303, (1973) · Zbl 0297.43010
[6] Coifman, R; Weiss, G, Operators transferred by representations of amenable groups, () · Zbl 0284.43002
[7] Dieudonné, J, (), Chap. XXI · Zbl 0326.22001
[8] Khalil, I, Sur l’analyse harmonique du groupe affine de la droite, Studia math., 51, No. I, 139-167, (1974) · Zbl 0294.43007
[9] Duren, P.L, Theory of Hp spaces, (1970), Academic Press New York/London · Zbl 0215.20203
[10] Eymard, P, Algèbres Ap et convoluteurs de lp, (), exposé 367
[11] Eymard, P; Lohoue, N, Sur la racine carrée du noyau de Poisson dans LES espaces symétriques et une conjecture de E. M. Stein, Ann. sci. école norm. sup., 8, No. 2, (1975), Ser. 4 · Zbl 0315.43013
[12] Ehrenpreis, L; Mautner, F, Uniformely bounded representations of groups, (), 231-233 · Zbl 0064.02604
[13] Fefferman, Ch; Stein, E.M, Hp spaces of several variables, Acta math., 129, (1972)
[14] Fell, J.M.G, Weak containement and induced representations of groups, Can. J. math., 14, 237-268, (1962) · Zbl 0138.07301
[15] Harish-Chandra, Spherical functions on a semi-simple Lie groups, I, Amer. J. math., 80, 553-613, (1958) · Zbl 0093.12801
[16] Helgason, S.G, A duality for symetric spaces with applications to group representations, Advances in math., 5, 1-154, (1970) · Zbl 0209.25403
[17] Helgason, S.G, An analogue of the Paley-Wiener theorem for Fourier transformations on certain symetric spaces, Math. ann., 165, 297-308, (1966) · Zbl 0178.17101
[18] Helgason, S.G; Johnson, The bounded spherical functions on symetric spaces, Advances in math., 3, 586-593, (1969) · Zbl 0188.45405
[19] Herz, C.S, Sur le phénomène de kunze et Stein, C. R. acad. sci. Paris, 271, 491-493, (1970) · Zbl 0198.18202
[20] Herz, C.S, Theory of p-spaces with an applications to convolution operators, Trans. amer. math. soc., 154, 69-82, (1971) · Zbl 0216.15606
[21] Herz, C.S, Generalisation of Fourier-Stieltjes algebras, Ann. inst. Fourier (Grenoble), 24, No. 3, 145-157, (1974) · Zbl 0287.43006
[22] Herz, C.S, Harmonic synthesis for subgroups, Ann. inst. Fourier (Grenoble), 23, No. 3, 91-123, (1973) · Zbl 0257.43007
[23] Herz, C.S, Problems of extrapolation and spectral synthesis on groups, (), 155-166
[24] Hunt, R, L(p, q) spaces, Enseignement math. ser. II, 12, 249-276, (1966) · Zbl 0181.40301
[25] Kunze, R; Stein, E.M, Uniformly bounded representations and harrmonic analysis on the 2 × 2 real unimodular groups, Amer. J. math., 82, 1-62, (1960)
[26] Lipsman, R, An explicit realization of Kostant’s complementary series with applications to uniformly bounded representations, à paraître.24. {\scn. lohoué}, synthèse harmonique des sous-groupes discrets, Canad. J. math., 27, No. 4, 792-796, (1975)
[27] {\scN. Lohoué}, Sur les représentations uniformément bornées et le théorème de convolution de Kunze et Stein, à paraître. · Zbl 0492.22013
[28] Mackey, G.W, Induced representations of locally compact groups, Ann. of math., 55, 101-139, (1952) · Zbl 0046.11601
[29] {\scD. Montgomery et L. Zippin}, Topological transformation groups, Tracts in Pure and Applied Mathematics No. 1, Interscience, New York/London. · Zbl 0025.23701
[30] {\scM. Rajagopalan}, Lp conjecture for locally compact groups, I, Trans. Amer. Math. Soc.{\bf125}, 216-222. · Zbl 0169.46203
[31] Rickert, N.W, Colloq. math., 19, No. 2, 301-303, (1968)
[32] Stein, E.M, Singular integrals and differentiability properties of functions, (1970), Princeton Univ. Press Princeton, N. J · Zbl 0207.13501
[33] Takesaki, M; Tatsuuma, N, Duality and subgroups, J. functional analysis, 11, 184-185, (1972) · Zbl 0245.46090
[34] Takahashi, R, Sur LES fonctions sphériques et la formule de Plancherel dans le groupe hyperbolique, Japan. J. math., 31, 55-90, (1961) · Zbl 0196.15603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.