×

zbMATH — the first resource for mathematics

Recursive credibility estimation. (English) Zbl 0463.62093

MSC:
62P05 Applications of statistics to actuarial sciences and financial mathematics
62L12 Sequential estimation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bühlmann H., ASTIN Bulletin 4 pp 199– (1967)
[2] Bühlmann H., Proceedings of the sixth Berkeley symposium 1 pp 515– (1971)
[3] Bühlmann H., Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker 70 pp 111– (1970)
[4] De Groot M. H., Optimal statistical decisions (1970)
[5] De Vylder F., Introduction aux théories actuarielles de credibilité (1975)
[6] DOI: 10.1080/03461238.1976.10405610 · Zbl 0345.62082
[7] Gerber H. U. & Jones, Transactions of the Society of Actuaries 27 pp 31– (1975)
[8] Hachemeister C. A., Credibility: Theory and applications pp 129– (1975)
[9] Jewell W. S., Credibility: Theory and applications pp 193– (1975)
[10] Jewell W. S., RM-75-63 (1975)
[11] Jewell W. S., ORC 75-16 (1975)
[12] DOI: 10.1080/03461238.1976.10405932 · Zbl 0369.62073
[13] Margolin M. H., Transactions of the Society of Actuaries 23 pp 229– (1971)
[14] Margolin M. H., Transactions of the Society of Actuaries 27 pp 49– (1975)
[15] DOI: 10.1080/03461238.1979.10413715 · Zbl 0418.62087
[16] DOI: 10.1080/03461238.1980.10404683 · Zbl 0432.62074
[17] Sundt B., Statistical Research Reports 1980 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.