zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods. (English) Zbl 0463.65025

MSC:
65F15Eigenvalues, eigenvectors (numerical linear algebra)
WorldCat.org
Full Text: DOI
References:
[1] Axelsson, O.: On preconditioning and convergence accelaration in sparse matrix problems. Cern 74-10 (1974) · Zbl 0354.65020
[2] Axelsson, O.: Solution of linear systems of equations: iterative methods. Sparse matrix techniques (1976) · Zbl 0334.65028
[3] Axelsson, O.: On preconditioned conjugate gradient methods. Cna-143 (1978)
[4] O. Axelsson, Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations, Report 78.03R, Dept. of Computer Sciences, Chalmers Univ. of Technology, Göteborg, Sweden; Linear Algebra and Appl., to appear. · Zbl 0439.65020
[5] Axelsson, O.: A generalized conjugate gradient direction method and its application on a singular perturbation problem. Proceedinngs, 8th biennial numerical analysis conference (1979)
[6] Blair, A.; Metropolis, N.; Von Neumann, J.; Taub, A. H.; Tsingori, M.: A study of a numerical solution of a two-dimensional hydrodynamical problem. Math. tables aids comput. 13, 145-184 (1979) · Zbl 0102.33603
[7] Concus, Paul; Golub, Gene H.: A generalized conjugate gradient method for nonsymmetric systems of linear equations. Report stan-CS-76-535 (1976) · Zbl 0344.65020
[8] Concus, P.; Golub, G. H.; O’leary, D. P.: A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. Sparse matrix computation, 309-332 (1976)
[9] Daniel, J. W.: The conjugate gradient method for linear and nonlinear operator equations. Ph.d. thesis (1965)
[10] Daniel, J. W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. anal. 4, 10-26 (1967) · Zbl 0154.40302
[11] Eisenstat, S. C.; Elman, H.; Schultz, M. H.; Sherman, A. H.: Solving approximations to the convection diffusion equation. Proceedings of the society of petroleum engineers of the AIME (1979)
[12] S.C. Eisenstat, H. Elman, and M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, unpublished. · Zbl 0524.65019
[13] Engeli, M.; Ginsburg, M.; Rutishauser, H.; Stiefel, E.: Refined iterative methods for the computation of the solution and the eigenvalues of self-adjoint boundary value problems. Mitt. inst. Angew. math. ETH, Zürich (1959) · Zbl 0089.12103
[14] Faddeev, D. K.; Faddeeva, V. N.: Computational methods of linear algebra. (1963) · Zbl 0112.07503
[15] Fletcher, R.: Conjugate gradient methods for indefinite systems. Lecture notes in mathematics 506 (1976) · Zbl 0326.65033
[16] Golub, G. H.; Varga, R. S.: Chebyshev semi-iterative methods, successive over-relaxation iterative methods, and second-order Richardson iterative methods. Numer. math. 3, 147-168 (1961) · Zbl 0099.10903
[17] Hageman, L. A.; Luk, F.; Young, D. M.: On the acceleration of iterative methods: preliminary report. Cna-129 (1977)
[18] L.A. Hageman, F. Luk, and D.M. Young, On the equivalence of certain iterative acceleration methods, SIAM J. Numer. Anal., to appear. · Zbl 0472.65031
[19] Hageman, L. A.; Young, David M.: Applied iterative methods. (1981) · Zbl 0459.65014
[20] Hestenes, M. R.; Stiefel, E. L.: Methods of conjugate gradients for solving linear systems. J. res. Nat. bur. Standards 49, 409-436 (1952) · Zbl 0048.09901
[21] Hestenes, Magnus R.: The conjugate-gradient method for solving linear systems. Numerical analysis (1956) · Zbl 0072.14102
[22] Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. res. Nat. bur. Standards 45, 255-282 (1950)
[23] Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. res. Nat. bur. Standards 49, 33-53 (1952)
[24] Manteuffel, T. A.: The tchebyshev iteration for nonsymmetric linear systems. Numer. math. 28, 307-327 (1977) · Zbl 0361.65024
[25] Reid, J. K.: On the method of conjugate gradients for the solution of large sparse systems of linear equations. Proceedings of the conference on large sparse sets of linear equations, 231-254 (1971)
[26] Reid, J. K.: The use of conjugate gradients for systems of linear equations possessing ”property A”. SIAM J. Numer. anal. 9, 325-332 (1972) · Zbl 0259.65037
[27] Richardson, L. F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam. Philos. trans. Roy. soc. London ser. A 210, 307-357 (1910) · Zbl 41.0871.04
[28] Vinsome, P. K. W.: ORTHOMIN, an iterative method for solving sparse sets of simultaneous linear equations. 4th symposium of numerical simulation of reservoir performance of the society of petroleum engineers of the AIME (1976)
[29] Widlund, O.: A Lanczos method for a class of nonsymmetric systems of linear equations. SIAM J. Numer. anal. 15, 801-812 (1978) · Zbl 0398.65030
[30] Wong, Y. S.: Conjugate gradient type methods for unsymmetric matrix problems. Technical report no. 79-36 (1979)
[31] Young, David M.: Iterative solution of large linear systems. (1971) · Zbl 0231.65034
[32] Young, David M.; Jea, Kang C.: Some generalizations of conjugate gradient acceleration for nonsymmetrizable iterative methods. Cna-149 (1979)
[33] Young, David M.; Hayes, Linda; Jea, Kang C.: Conjugate gradient acceleration of iterative methods: part I, the symmetrizable case. Cna-162 (1980)
[34] Young, David M.; Jea, Kang C.: Conjugate gradient acceleration of iterative methods: part II, the nonsymmetrizable case. Cna-163 (1980)