×

zbMATH — the first resource for mathematics

On the logarithmic plurigenera of algebraic surfaces. (English) Zbl 0464.14008

MSC:
14J10 Families, moduli, classification: algebraic theory
32J15 Compact complex surfaces
14J25 Special surfaces
14J15 Moduli, classification: analytic theory; relations with modular forms
14L24 Geometric invariant theory
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] S.S. Abhyankar and T.T. Moh : Embeddings of the line in the plane . J. Reine Angew. Math. 276 (1975) 148-166. · Zbl 0332.14004
[2] S. Iitaka : On D-dimensions of algebraic varieties . J. Math. Soc. Japan, 23 (1971) 356-373. · Zbl 0212.53802
[3] S. Iitaka : Logarithmic forms of algebraic varieties . J. Fac. Sci. Univ. Tokyo, 23, 1976 525-544. · Zbl 0342.14017
[4] S. Iitaka : Algebraic Geometry. III . 1977 Iwanami- Shoten [Japanese]. · Zbl 0656.14001
[5] S. Iitaka : On logarithmic K3 surfaces . Osaka J. Math. 16 (1979) 675-705. · Zbl 0454.14016
[6] Y. Kawamata : Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension one . In: Proceedings of the International Symposium on Algebraic Geometry Kyoto (1977) 207-217. · Zbl 0437.14018
[7] Y. Kawamata : On the classification of non-complete algebraic surfaces . In: Algebraic Geometry . Lect. Note in Math., vol. 732, Springer (1979) 215-232. · Zbl 0407.14012
[8] Y. Kawamata : On the cohomology of Q-divisors . Proc. Japan Acad., 56 (1980) Ser. A, No. 1. · Zbl 0443.14011
[9] K. Kodaira : On compact complex analytic surfaces I . Ann. of Math., 71 (1960) 111-152. · Zbl 0098.13004
[10] K. Kodaira : On the structure of compact complex analytic surfaces I . Amer. J. Math., 86 (1964) 751-798. · Zbl 0137.17501
[11] K. Kodaira : On compact analytic surfaces II, III . Ann. of Math., 77, 563-626, 78 (1963) 1-40. · Zbl 0171.19601
[12] M. Miyanishi and T. Sugie : Affine surfaces containing cylinderlike open sets . (Preprint). · Zbl 0445.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.