×

zbMATH — the first resource for mathematics

Finite groups with a centralizer of order 6. II. (English. Russian original) Zbl 0464.20016
Algebra Logic 19, 133-139 (1981); translation from Algebra Logika 19, 214-223 (1980).
MSC:
20D05 Finite simple groups and their classification
20D08 Simple groups: sporadic groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. V. Kabanov, ”Finite groups with a self-centralizing subgroup of order 6 and one class of involutions,” Algebra Logika,11, No. 5, 516–534 (1972). · Zbl 0275.20031
[2] A. A. Makhnev, ”Groups with a centralizer of order 6,” Mat. Zametki,22, No. 1, 153–159 (1977).
[3] A. A. Makhnev, ”Finite groups with a centralizer of order 6,” Algebra Logika,16, No. 4, 379–394 (1977).
[4] A. A. Makhnev, ”Finite groups with a self-normalizing subgroup of order 6,” Algebra Logika,19, No. 1, 91–102 (1980). · Zbl 0475.20017
[5] G. Glauberman, ”Central elements in core-free groups,” J. Algebra,13, 403–420 (1966). · Zbl 0145.02802 · doi:10.1016/0021-8693(66)90030-5
[6] W. Feit and J. Thompson, ”Finite groups which contain a self-centralizing subgroup of order 3,” Nagoya Math. J.,21, 570–576 (1962). · Zbl 0114.25602
[7] G. Higman, Odd Characterizations of Finite Simple Groups, Lecture Notes, Univ. of Michigan (1968). · Zbl 0162.24202
[8] A. D. Ustyuzhaninov, ”Finite groups with three involutions,” Sib. Mat. Zh.,13, No. 1, 182–197 (1972).
[9] B. Beisiegel, ”Semi-extraspezialle p-Gruppen,” Math. Z.,156, No. 3, 247–254 (1977). · Zbl 0353.20022 · doi:10.1007/BF01214412
[10] J. Alperin, ”Up and down fusion,” J. Algebra,28, 206–209 (1974). · Zbl 0287.20015 · doi:10.1016/0021-8693(74)90033-7
[11] D. Gorenstein and J. Walter, ”The characterization of finite groups with dihedral Sylow 2-subgroups,” J. Algebra,2, 85–151, 218–270, 354–393 (1965). · Zbl 0192.11902 · doi:10.1016/0021-8693(65)90027-X
[12] J. Hall, ”Fusion and dihedral 2-subgroups,” J. Algebra,40, No. 1, 203–228 (1976). · Zbl 0338.20027 · doi:10.1016/0021-8693(76)90093-4
[13] V. V. Kabanov, V. D. Mazurov, and S. A. Syskin, ”Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2,” Mat. Zametki,14, No. 1, 127–132 (1973). · Zbl 0294.20013
[14] V. D. Mazurov, ”Finite groups with a given Sylow 2-subgroup,” Dokl. Akad. Nauk SSSR,168, No. 3, 519–521 (1966). · Zbl 0199.06204
[15] D. Held, ”A characterization of the alternating groups of degree eight and nine,” J. Algebra,7, 218–237 (1967). · Zbl 0189.02501 · doi:10.1016/0021-8693(67)90057-9
[16] R. Brauer and P. Fong, ”A characterization of the Mathieu group M12,” Trans. Am. Math. Soc.,122, 18–47 (1966). · Zbl 0138.02503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.