The asymptotics of the gap in the Mathieu equation. (English) Zbl 0464.34020


34L99 Ordinary differential operators
47E05 General theory of ordinary differential operators
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
Full Text: DOI


[1] Arnold, V., (Classical Mechanics (1978), Springer-Verlag: Springer-Verlag Berlin/New York)
[2] Eastham, M. S.P., (The Spectral Theory of Periodic Differential Equations (1974), Hafner: Hafner New York) · Zbl 0285.34015
[3] Harrell, E., Commun. Math. Phys., 60, 73-95 (1978)
[4] Harrell, E., Ann. Phys. (N.Y.), 119, 351-369 (1979)
[5] Harrell, E., Commun. Math. Phys., 75, 239-261 (1980)
[6] E. HarrellAmer. J. Math.; E. HarrellAmer. J. Math.
[7] E. Harrell; E. Harrell
[8] Hochstadt, H., (Proc. Amer. Math. Soc., 14 (1963)), 930-932
[9] Kato, T., (Perturbation Theory for Linear Operators (1966), Springer-Verlag: Springer-Verlag Berlin/New York)
[10] Levitan, B. M.; Sargstan, I. S., (Introduction to Spectral Theory (1975), Amer, Math. Soc: Amer, Math. Soc Providence, R.I)
[11] Magnus, W.; Winkler, W., (Hill’s Equation (1966), Wiley: Wiley New York) · Zbl 0158.09604
[12] Read, M.; Simon, B., (Methods of Modern Mathematical Physics. IV. Analysis of Operators (1978), Academic Press: Academic Press New York)
[13] Trubowitz, E., Comm. Pure Appl. Math., 30, 321-337 (1977)
[14] Levy, D.; Keller, J., Comm. Pure Appl. Math., 16, 469-476 (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.