Multicriteria analysis: Survey and new directions. (English) Zbl 0464.90068


90C31 Sensitivity, stability, parametric optimization
90-02 Research exposition (monographs, survey articles) pertaining to operations research and mathematical programming
91B06 Decision theory
91B16 Utility theory


Full Text: DOI


[1] Aubin, J.P.; Naslund, B., An exterior branching algorithm, European institute for advanced studies in management, Working paper 72-42, (1972)
[2] Belenson, S.M.; Kapur, K.C., An algorithm for solving multicriterion linear programming problems with examples, Operational res. quart., 24, 1, (1973) · Zbl 0261.90035
[3] Benayoun, R.; de Montgolfier, J.; Tergny, J.; Larichev, O., Linear programming with multiple objective functions: step method (STEM), Math. programming, 1, 3, (1971) · Zbl 0242.90026
[4] Boyd, D., A methodology for analyzing decision problems involving complex preference assignments, (1970), Decision Analysis Group, Stanford Research Institute Menlo Park, CA
[5] Buffet; Gremy; Marc; Sussmann, Peut-on choisir en tenant compte de critères multiples? une méthode (ELECTRE) et trois applications, Rev. METRA, 6, 2, (1967)
[6] Dyer, J.S., A time-sharing computer program for the solution of the multiple criteria problem, Management sci., 19, 12, (1973) · Zbl 0261.90034
[7] Evans, J.P.; Steuer, R.E., Generating efficient extreme points in linear multiple objective programming: two algorithms and computing experience, () · Zbl 0281.90045
[8] Fishburn, P.C., Methods of estimating additive utilities, Management sci., 13, 7, (1966)
[9] Fishburn, P.C., Utility theory, Management sci., 14, 5, (1968) · Zbl 0155.28806
[10] Fishburn, P.C., Utility theory for decision making, (1970), Wiley New York · Zbl 0213.46202
[11] Fishburn, P.C., Utility theory with inexact preferences and degrees of preference, Synthese, 21, (1970)
[12] Geoffrion, A.M., Proper efficiency and the theory of vector maximization, J. math. anal. appl., 22, (1968) · Zbl 0181.22806
[13] Geoffrion, A.M.; Dyer, J.S.; Feinberg, An iterative approach for multicriterion optimization, with an application to the operation of an Academic department, Management sci., 19, 4, (1972) · Zbl 0247.90069
[14] Gorman, W.W., Separable utility and aggregation, Econometrica, 27, (1959) · Zbl 0161.39601
[15] Haimes, Y.Y.; Hall, W.A.; Freedman, H.T., Multiobjective optimization in water resource systems, (1975), Elsevier New York
[16] Hansen, P.; Anciaux, M.; Vincke, Ph., Quasi-kernels of outranking relations, ()
[17] Hwang, C.L.; Masud, A.S., Multiple objective decision making: methods and applications (a state-of-the-art survey), ()
[18] Jacquet-Lagrèze, E., La modélisation des préférences—préordres, quasi-ordres et relations floues, () · Zbl 0416.90004
[19] Jacquet-Lagrèze, E., How we can use the notion of semi-orders to build outranking relations in multicriteria decision making, () · Zbl 0327.90003
[20] Jamison, D.T.; Lau, L.J., Semiorders and the theory of choice, Econometrica, 41, 5, (1973) · Zbl 0276.90003
[21] Keeney, R.L., Utility functions for multiattributed consequences, Management sci., 18, 5, (1972) · Zbl 0227.90006
[22] Keeney, R.L., Multiplicative utility functions, Operations res., 22, 1, (1974) · Zbl 0276.90005
[23] Keeney, R.; Raiffa, H., Decisions with multiple objectives: preferences and value tradeoffs, (1976), Wiley New York · Zbl 0488.90001
[24] Luce, D., Semiorders and a theory of utility discrimination, Econometrica, 24, (1956) · Zbl 0071.14006
[25] Monjardet, B.; Jacquet-Lagrèze, E., Modélisation des préférences et quasi-orders, Math. sci. humaines, 62, (1978) · Zbl 0416.90004
[26] Monjardet, B., Axiomatiques et propriétés des quasi-ordres, Math. sci. humaines, 63, (1978) · Zbl 0417.06005
[27] Moscarola, J.; Roy, B., Procédure automatique d’examen de dossiers fondée sur un classement trichotomique en présence de critéres multiples, RAIRO recherche opérationnelle, 22, 2, (1977) · Zbl 0367.90114
[28] Philip, J., Algorithms for the vector maximization problem, Math. programming, 2, 2, (1977)
[29] Raiffa, H., Preferences for multiattributed alternatives, () · Zbl 0107.13603
[30] Roy, B., Classement et choix en présence de points de vue multiples (la méthode ELECTRE), Rev. française automat., informat., recherche opérationelle, 8, (1968)
[31] Roy, B., Problems and methods with multiple objective functions, Math. programming, 1, (1971) · Zbl 0254.90061
[32] Roy, B., La méthode ELECTRE II, METRA, direction scientifique, Note de travail N, 142, (1971)
[33] Roy, B.; Bertier, P., La méthode ELECTRE II, une application au média-planning, () · Zbl 0204.18903
[34] Roy, B., How outranking relation helps multiple criteria decision making, ()
[35] Roy, B., Critères multiples et modélisation des préférences: l’apport des relations de surclassement, Rev. econom. politique, 84, 1, (1974)
[36] Roy, B., Vers une méthodologie générale d’aide à la décision multicritère, Rev. METRA, XIV, 3, (1975)
[37] Roy, B.; Vincke, Ph.; Brans, J.P., Aide à la décision multicritère, Rev. belge statist. informat., recherche opérationnelle, 15, 4, (1975)
[38] Roy, B., Partial preference analysis and decision-aid: the fuzzy outranking relation concept, ()
[39] Roy, B., ELECTRE III: un algorithme de classement fondé une représentation floue des préférences en présence de critères multiples, Cahiers centre etudes recherche opérationnelle, 20, 1, (1978) · Zbl 0377.90003
[40] Roy, B.; Vincke, Ph., Systèmes relationnels de préférences en prèsence de critères multiples avec seuils, Cahiers centre etudes recherche opérationnelle, 22, 1, (1980) · Zbl 0435.90013
[41] Roy, B.; Vincke, Ph., Pseudo-critères et systèmes relationnels de préférence: nouveaux concepts et nouveaux résultats en vue de l’aide à la décision, ()
[42] B. Roy, A multicriteria analysis for trichotomic segmentation problems, in: P. Nijkamp and J. Spronk, Eds., Multiple Criteria Analysis: Practical Methods, to appear.
[43] B. Roy, L’Aide à la Décision: Critères Multiples et Optimisation pour Choisir, Trier, Ranger, book in preparation.
[44] Ting, H.M., Aggregation of attributes for multiattributed utility assessment, ()
[45] Vincke, Ph., Problèmes multicritères, Cahiers centre etudes recherche opérationnelle, 16, 4, (1974) · Zbl 0305.90045
[46] Vincke, Ph., A new approach to multiple criteria decision-making, () · Zbl 0841.90005
[47] Vincke, Ph., Concept de quasi-ordre généralisé et théorèmes de représentation, () · Zbl 0529.90026
[48] Vincke, Ph., Une méthode interactive en programmation linéaire à plusieurs fonctions économiques, Rairo, V-2, (1976) · Zbl 0351.90050
[49] Vincke, Ph., Quasi-kernels to minimum weakness in a graph, Discrete math., 20, 2, (1977)
[50] Vincke, Ph., Quasi-ordres généralisés et représentation numérique, Math. sci. humaines, 62, (1978) · Zbl 0419.90005
[51] Vincke, Ph., Vrais, quasi, pseudo et précritères dans un ensemble fini: propriétés et algorithmes, ()
[52] Vincke, Ph., Semiordered mixture spaces, Econometrica, 48, (1980) · Zbl 0435.90012
[53] Wallenius, J., Comparative evaluation of some interactive approaches to multicriterion optimization, European institute for advanced studies in management, working paper 73, (1973)
[54] Wallenius, J., Interactive multiple criteria decision methods: an investigation and an approach, (1975), The Helsinki School of Economics
[55] Yu, P.L., Cone convexity, cone extreme points and non-dominated solutions in decision problems with multiobjectives, J. optimization theory appl., 14, (1974) · Zbl 0268.90057
[56] Yu, P.L.; Zeleny, M., The set of all nondominated solutions in linear case and a multicriteria simplex method, J. math. anal. appl., 49, (1975) · Zbl 0313.65047
[57] Zeleny, M., Linear multiobjective programming, () · Zbl 0325.90033
[58] Zionts, S.; Wallenius, J., An interactive programming method for solving the multiple criteria problem, European institute for advanced studies in management, working paper 74-10, (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.