zbMATH — the first resource for mathematics

On the Stickelberger ideal and the circular units of an abelian field. (English) Zbl 0465.12001

11R18 Cyclotomic extensions
11R27 Units and factorization
11R23 Iwasawa theory
Full Text: DOI EuDML
[1] [G] Gillard, R.: Remarques sur les Unités Cyclotomiques et les Unités Elliptiques. J. Number Theory11, 21-48 (1979) · Zbl 0405.12008 · doi:10.1016/0022-314X(79)90018-0
[2] [H] Hasse, H.: Über die Klassenzahl abelscher Zahlkörper. Berlin: Akademie-Verlag 1952 · Zbl 0063.01966
[3] [I] Iwasawa, K.: A class number formula for cyclotomic fields. Ann. of Math.76, 171-179 (1962) · Zbl 0125.02003 · doi:10.2307/1970270
[4] [K] Kummer, E.E.: Mémoire sur la théorie des nombres complexes composés de racines de l’unité et de nombres entiers. Collected Papers I. Berlin-Heidelberg-New York: Springer-Verlag 1975
[5] [L] Leopoldt, H.W.: Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper. Abh. Deutsche Akad. Wiss. Berlin, math.-nat. Klasse 1953, No. 2 (1954)
[6] [La] Lang, S.: Cyclotomic Fields. Berlin: Springer-Verlag 1978 · Zbl 0395.12005
[7] [Sch] Schmidt C.-G.: Größencharaktere und Relativklassenzahl abelscher Zahlkörper. J. Number Theory11, 128-159 (1979) · Zbl 0403.12009 · doi:10.1016/0022-314X(79)90026-X
[8] [S] Sinnott, W.: On the Stickelberger ideal and the circular units of a cyclotomic field. Ann. of Math.108, 107-134 (1978) · Zbl 0395.12014 · doi:10.2307/1970932
[9] [W] Weil, A.: Sommes de Jacobi et caractères de Hecke, Nachrichten der Akad. Göttingen 1-14, 1974 · Zbl 0367.10035
[10] [WW] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Univ. Press, 1962
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.