×

zbMATH — the first resource for mathematics

On stable parallelizability of \(G_{k,n}\) and related manifolds. (English) Zbl 0465.57008

MSC:
57R25 Vector fields, frame fields in differential topology
57R20 Characteristic classes and numbers in differential topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [BH] Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces. III. Am. J. Math.82, 491-504 (1960)
[2] [BK] Bredon, G., Kosinski, A.: Vector fields on ?-manifolds. Ann. Math.84, 85-90 (1966) · Zbl 0151.31701
[3] [Ch] Chern, S.S.: On the multiplication in the characteristic ring of a sphere bundle. Ann. Math.49, 362-372 (1948) · Zbl 0033.40202
[4] [GHV] Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology, Vols. I?III. London, New York: Academic Press 1976 · Zbl 0372.57001
[5] [HH] Hsiang, W.C., Hsiang, W.Y.: Differentiable actions of compact connected classical groups. I. Am. J. Math.89, 705-786 (1967) · Zbl 0184.27204
[6] [HS] Hiller, H., Stong, R.: Immersion dimension for real Grassmannians. Math. Ann.255, 361-367 (1981) · Zbl 0451.51014
[7] [HSz] Hsiang, W.C., Szczarba, R.: On the tangent bundle of a Grassmann manifold. Am. J. Math.86, 698-704 (1964) · Zbl 0151.31702
[8] [K] Kervaire, M.: Courbure intégrale généralisee et homotopie. Math. Ann.131, 219-252 (1956) · Zbl 0072.18202
[9] [L] Lam, K.Y.: A formula for the tangent bundle of flag manifolds and related manifolds. Trans. Am. Math. Soc.213, 305-314 (1975) · Zbl 0312.55020
[10] [LMP] Lusztig, G., Milnor, J., Peterson, F.: Semi-characteristics and cobordism. Topology8, 357-359 (1969) · Zbl 0165.26302
[11] [MS] Milnor, J., Stasheff, J.: Characteristic classes. Princeton: Princeton University Press 1974 · Zbl 0298.57008
[12] [O] Oproiu, V.: Some non-embedding theorems for the Grassmann manifoldsG 2, n andG 3, n. Proc. Edinburgh Math. Soc.20, 177-185 (1977) · Zbl 0359.57008
[13] [Y] Yoshida, Y.: Parallelizability of Grassmann manifolds. Hiroshima Math. J.5, 193-196 (1975) · Zbl 0305.57017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.