×

Error analysis of the nonlinear multi-grid method of the second kind. (English) Zbl 0465.65055


MSC:

65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
65R20 Numerical methods for integral equations
35J65 Nonlinear boundary value problems for linear elliptic equations
45B05 Fredholm integral equations
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] G. P. Astrachancev: An iteiative method of solving elliptic net problems. Ž. vyčisl. Mat. mat. Fiz. 11 (1971), 439-448
[2] N. S. Bachvalov: On the convergence of a relaxation method with natural constraints on the elliptic operator. Ž. vyčisl. Mat. mat. Fiz. 6 (1966), 861 - 885
[3] A. Brandt: Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation 31 (1977), 333-390. · Zbl 0373.65054
[4] R. P. Fedorenko: The speed of convergence of one iterative process. Ž. vyčisl. Mat. mat. Fiz. 4 (1964), 559-564 · Zbl 0148.39501
[5] W. Hackbusch: On the convergence of multi-grid iterations. Beiträge zur Numerischen Mathematik 9, to appear 1981. · Zbl 0465.65054
[6] W. Hackbusch: Die schoelle Auflösung der Fredholmschen Integralgleichung zweiter Art. in Beiträge zur Numerischen Mathematik 9, to appear 1981. · Zbl 0458.65108
[7] W. Hackbusch: On the fast solving of parabolic boundary control problems. SIAM Journal on Control and Optimization 17 (1979), 231 - 244. · Zbl 0402.49025
[8] W. Hackbusch: On the fast solving of elliptic control problems. To appear in JOTA. · Zbl 0402.49025
[9] W. Hackbusch: On the fast solution of nonlinear elliptic equations. Numerische Mathematik 32 (1979), 83-95. · Zbl 0386.65047
[10] W. Hackbusch: Numerical solution of nonlinear equations by the multi-grid iteration of the second kind. Numerical Methods for Non-linear Problems, Vol. 1 (C. Taylor, E. Hinton, O. R. J. Owen. Swansea: Pineridge Press 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.