Contact between elastic bodies. II. Finite element analysis. (English) Zbl 0465.73144


74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
49J40 Variational inequalities
49M15 Newton-type methods
65N15 Error bounds for boundary value problems involving PDEs


Zbl 0449.73117
Full Text: DOI EuDML


[1] J. Haslinger I. Hlaváček: Contact between elastic bodies. Part I. Continuous problems. Apl. Mat. 25 (1980), 324-348.
[2] J. Céa: Optimisation, théorie et algorithmes. Dunod, Paris 1971. · Zbl 0211.17402
[3] M. Zlámal: Curved elements in the finite element method. SIAM J. Numer. Anal. 10, (1973), 229-240. · Zbl 0285.65067 · doi:10.1137/0710022
[4] G. Strang G. Fix: An analysis of the finite element method. Prentice-Hall, 1973. · Zbl 0278.65116
[5] J. Nitsche: Über ein Variationsprinzip zur Lösung von Dirichlet-Problem bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. · Zbl 0229.65079 · doi:10.1007/BF02995904
[6] I. Hlaváček J. Lovíšek: Finite element analysis of the Signorini problem in semi-coercive cases. Apl. Mat. 25 (1980), 274-285. · Zbl 0448.73073
[7] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. · Zbl 1225.35003
[8] J. Haslinger: Finite element analysis for unilateral problems with obstacles on the boundary. Apl. Mat. 22(1977), 180-187. · Zbl 0434.65083
[9] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities. Part I. Primal Theory. Numer. Math. 28 (1977), 431 - 443. · Zbl 0369.65030 · doi:10.1007/BF01404345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.