zbMATH — the first resource for mathematics

Complete distributivity and alpha-convergence. (English) Zbl 0466.06017

06F15 Ordered groups
06F30 Ordered topological structures
22A26 Topological semilattices, lattices and applications
06D10 Complete distributivity
22A30 Other topological algebraic systems and their representations
Full Text: EuDML
[1] G. Birkhoff: Lattice Theory. (third edition), Amer. Math. Soc., Providence, Rhode Island, 1967. · Zbl 0153.02501
[2] R. D. Byrd: Complete distributivity in lattice-ordered groups. Pac. J. Math. 20 (1967), 423-432. · Zbl 0178.02902
[3] R. D. Byrd, J. T. Lloyd: Closed subgroups and complete distibrutivity in lattice-ordered groups. Math. Zeitschr. 101 (1967), 123-130. · Zbl 0178.02902
[4] J. Ellis: Unpublished doctoral dissertation, Tulane University, New Orleans, Louisiana, 1968. · Zbl 0205.29101
[5] J. Flachsmeyer: On Dini convergence in function spaces. DAN SSSR. 152 (1963), 1071-74.
[6] E. E. Floyd: Boolean algebras with pathological order properties. Pac. J. Math. 5 (1965), 687-689. · Zbl 0065.26603
[7] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press (Addison-Wesley), New York, 1963. · Zbl 0137.02001
[8] J. Jakubík: The interval topology of an \(l\)-group. Colloq. Math. XI (1963), 65-72. · Zbl 0122.28002
[9] J. L. Kelly: General Topology. Van Nostrand Press, Princeton, 1955.
[10] R. L. Madell: Embeddings of topological lattice ordered groups. Trans. Amer. Math. Soc. 146 (1969), 447-455. · Zbl 0192.36203
[11] F. Papangelou: Order convergence and topological completion of commutative lattice groups. Math. Annalen 155 (1964), 81-107. · Zbl 0131.02601
[12] F. Papangelou: Some considerations on convergence in abelian lattice groups. Pacific J. Math. 15 (1965), 1347-65. · Zbl 0146.04802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.