×

zbMATH — the first resource for mathematics

On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. (English) Zbl 0466.53023

MSC:
53C20 Global Riemannian geometry, including pinching
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] E. BOMBIERI , Theory of Minimal Surfaces and a Counter-Example to the Bernstein Conjecture in High Dimension (Lecture Notes, Courant Institute, 1970 ).
[2] J. CHEEGER , A Lower Bound for the Smallest Eigenvalue of the Laplacian in Problem in Analysis , a Symposium in honor of S. Bochner, Princeton University Press, Princeton, 1970 . Zbl 0212.44903 · Zbl 0212.44903
[3] S. Y. CHENG , Eigenfunctions and Nodal Sets (Comment Math. Helv., Vol. 51, 1976 , pp. 43-55). MR 53 #1661 | Zbl 0334.35022 · Zbl 0334.35022 · doi:10.1007/BF02568142 · eudml:139642
[4] C. CROKE , Some Isoperimetric Inequalities and Consequences (Ann. scient. Éc. Norm. Sup., (4), T. 13, 1980 , pp. 419-435). Numdam | MR 83d:58068 | Zbl 0465.53032 · Zbl 0465.53032 · numdam:ASENS_1980_4_13_4_419_0 · eudml:82059
[5] S. GALLOT and D. MEYER , Operateur de courbure et laplacien des formes différentielles d’une variété riemannienne (J. Math. pures et appl., Vol. 54, 1975 , pp. 259-284). MR 56 #13128 | Zbl 0316.53036 · Zbl 0316.53036
[6] M. GROMOV , Manifolds of Negative Curvature (preprint). · Zbl 0433.53028
[7] R. OSSERMAN , The Isoperimetric Inequality (Bulletin A.M.S., Vol. 84, No. 6, 1978 , pp. 1182-1238). Article | MR 58 #18161 | Zbl 0411.52006 · Zbl 0411.52006 · doi:10.1090/S0002-9904-1978-14553-4 · minidml.mathdoc.fr
[8] S. T. YAU , Isoperimetric Constants and the First Eigenvalue of a Compact Riemannian Manifold (Ann. scient. Éc. Norm. Sup., Vol. 4, t. 8, 1975 , pp. 487-507). Numdam | MR 53 #1478 | Zbl 0325.53039 · Zbl 0325.53039 · numdam:ASENS_1975_4_8_4_487_0 · eudml:81968
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.