Le Van, C. Topological degree and the Sperner lemma. (English) Zbl 0466.55001 J. Optimization Theory Appl. 37, 371-377 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 Documents MSC: 55M20 Fixed points and coincidences in algebraic topology 55M25 Degree, winding number 52Bxx Polytopes and polyhedra Keywords:Sperner’s lemma; topological degree; fixed-point theorems PDF BibTeX XML Cite \textit{C. Le Van}, J. Optim. Theory Appl. 37, 371--377 (1982; Zbl 0466.55001) Full Text: DOI OpenURL References: [1] Schwartz, J. T.,Nonlinear Functional Analysis, Gordon and Breach, New York, New York, 1969. [2] Lasry, J. M., andRobert, R.,Degré et Théorèmes de Point Fixe pour les Applications Multivoques et Applications, Cahier de Mathématique de la Décision, Université Paris-IX, Dauphine, France, 1975. [3] Geistdoerfer-Florenzano, M.,L’Equilibre Economique Général Transitif et Intransitif?Problèmes d’Existence, Centre d’Etudes Prospectives d’Economie Mathématique Appliquées à la Planification, Paris, France, Report No. 8004, 1980. [4] Scarf, H.,The Approximation of Fixed Points of a Continuous Mapping, SIAM Journal on Applied Mathematics, Vol. 15, No. 5, 1967. · Zbl 0153.49401 [5] Kuhn, H. W., andmacKinnon, J. G.,Sandwich Methods for Finding Fixed Points, Journal of Optimization Theory and Applications, Vol. 17, Nos. 3/4, 1975. · Zbl 0299.65030 [6] Hoang Tuy,Pivotal Methods for Computing Equilibrium Points: Unified Approach and New Restart Algorithm, Mathematical Programming, Vol. 16, pp. 210-227, 1979. · Zbl 0497.90059 [7] Todd, M. J.,The Computation of Fixed Points and Applications, Springer-Verlag, Berlin, Germany, 1976. · Zbl 0332.54003 [8] Berge, C.,Espaces Topologiques?Fonctions Multivoques, Dunod, Paris, France, 1959. · Zbl 0088.14703 [9] Yoseloff, M.,Topologic Proofs of Some Combinatorial Theorems, Journal of Combinatorial Theory, (A.), Vol. 17, pp. 95-111, 1974. · Zbl 0365.05021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.