×

zbMATH — the first resource for mathematics

Equivalence of differentiable functions, rational functions and polynomials. (English) Zbl 0466.58006

MSC:
58C05 Real-valued functions on manifolds
58C25 Differentiable maps on manifolds
58K99 Theory of singularities and catastrophe theory
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] S. LOJASIEWICZ, Ensemble semi-algebraic, IHES, 1965.
[2] J. W. MILNOR, Lectures on the h-cobordism theorem, Princeton U.P., 1965. · Zbl 0161.20302
[3] M. SHIOTA, Equivalence of differentiable functions and analytic functions, Thesis, Univ. of Rennes, France, 1978.
[4] M. SHIOTA, Equivalence of differentiable mappings and analytic mappings, Publ. Math. IHES, 54 (1981), 37-122. · Zbl 0516.58012
[5] M. SHIOTA, On the unique factorial property of the ring of Nash functions, Publ. RIMS, Kyoto Univ., 17 (1981), 363-369. · Zbl 0503.58001
[6] M. SHIOTA, Sur la factorialité de l’anneau des fonctions lisses rationnelles, C.R., A.S., Paris, 282 (1981), 67-70. · Zbl 0489.14013
[7] H. SKODA, J. BRIANCON, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de cn, C.R.A.S., Paris, 278 (1974), 949-951. · Zbl 0307.32007
[8] S. SMALE, Differentiable and combinatorial structures on manifolds, Ann. of Math., 74 (1961), 498-502. · Zbl 0111.18902
[9] R. THOM, L’équivalence d’une fonction différentiable et d’un polynôme, Topology, 3., Suppl. 2 (1965), 297-307. · Zbl 0133.30702
[10] A. TOGNOLI, Algebraic geometry and Nash functions, Academic Press, 1978. · Zbl 0418.14002
[11] J. C. TOUGERON, Idéaux de fonctions différentiables I, Ann. Ins. Fourier, 18 (1968), 177-240. · Zbl 0188.45102
[12] J. H. C. WHITEHEAD, A certain region in Euclidean 3-space, Proc. Nat. Acad. Sci., 21 (1935), 364-366. · Zbl 0012.03604
[13] F. WALDHAUSEN, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88. · Zbl 0157.30603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.