×

An optimal order process for solving finite element equations. (English) Zbl 0466.65059


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
65F10 Iterative numerical methods for linear systems
35J65 Nonlinear boundary value problems for linear elliptic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] N. S. Bakhvalov, ”On the convergence of a relaxation method with natural constraints on the elliptic operator,” Ž. Vyčisl. Mat.i Mat. Fiz., v. 6, 1966, pp. 861-885. · Zbl 0154.41002
[2] R. E. Bank & Todd Dupont, ”Analysis of a two-level scheme for solving finite element equations,” Numer. Math. (Submitted.)
[3] James H. Bramble, Discrete methods for parabolic equations with time-dependent coefficients, Numerical methods for partial differential equations (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978) Publ. Math. Res. Center Univ. Wisconsin, vol. 42, Academic Press, New York-London, 1979, pp. 41 – 52.
[4] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16 (1970/1971), 362 – 369. · Zbl 0214.41405
[5] James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809 – 820. · Zbl 0226.65073
[6] Achi Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977), no. 138, 333 – 390. · Zbl 0373.65054
[7] Jim Douglas Jr., Todd Dupont, and Richard E. Ewing, Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal. 16 (1979), no. 3, 503 – 522. · Zbl 0411.65064
[8] Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575 – 626. · Zbl 0224.35048
[9] Jim Douglas Jr., Effective time-stepping methods for the numerical solution of nonlinear parabolic problems, Mathematics of finite elements and applications, III (Proc. Third MAFELAP Conf., Brunel Univ., Uxbridge, 1978) Academic Press, London-New York, 1979, pp. 289 – 304.
[10] Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441 – 463. · Zbl 0423.65009
[11] R. P. Fedorenko, A relaxation method of solution of elliptic difference equations, Ž. Vyčisl. Mat. i Mat. Fiz. 1 (1961), 922 – 927 (Russian).
[12] R. P. Fedorenko, On the speed of convergence of an iteration process, Ž. Vyčisl. Mat. i Mat. Fiz. 4 (1964), 559 – 564 (Russian).
[13] Pierre Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York, 1976, pp. 207 – 274.
[14] W. Hackbusch, On the Convergence of a Multi-Grid Iteration Applied to Finite Element Equations, Report 77-8, Universität zu Köln, July 1977.
[15] W. Hackbusch, On the Computation of Approximate Eigenvalues and Eigenfunctions of Elliptic Operators by Means of a Multi-Grid Method, Report 77-10, Universität zu Köln, August 1977. · Zbl 0403.65043
[16] Pierre Jamet, Estimations d’erreur pour des éléments finis droits presque dégénérés, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 10 (1976), no. R-1, 43 – 60 (French, with Loose English summary). · Zbl 0346.65052
[17] R. A. Nicolaides, On multiple grid and related techniques for solving discrete elliptic systems, J. Computational Phys. 19 (1975), no. 4, 418 – 431. · Zbl 0363.65081
[18] R. A. Nicolaides, On the \?² convergence of an algorithm for solving finite element equations, Math. Comp. 31 (1977), no. 140, 892 – 906. · Zbl 0384.65052
[19] Donald J. Rose and Gregory F. Whitten, A recursive analysis of dissection strategies, Sparse matrix computations (Proc. Sympos., Argonne Nat. Lab., Lemont, Ill., 1975) Academic Press, New York, 1976, pp. 59 – 83. · Zbl 0356.65032
[20] Ridgway Scott, Interpolated boundary conditions in the finite element method, SIAM J. Numer. Anal. 12 (1975), 404 – 427. · Zbl 0357.65082
[21] Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. · Zbl 0356.65096
[22] Vidar Thomée, Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Comp. 34 (1980), no. 149, 93 – 113. · Zbl 0454.65077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.