zbMATH — the first resource for mathematics

On a conservative upwind finite element scheme for convective diffusion equations. (English) Zbl 0466.76090

76R99 Diffusion and convection
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI EuDML
[1] 1. K. BABA and S. YOSHII, An upwind scheme for convective diffusion equation by finite element method, Proceedings of VIIIth International Congress on Application of Mathematics in Engineering, Weimar/DDR, 1978. Zbl0386.76067 · Zbl 0386.76067
[2] 2. J. H. BRAMBLE and S. R. HILBERT, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math., 16 (1971), 362-369. Zbl0214.41405 MR290524 · Zbl 0214.41405 · doi:10.1007/BF02165007 · eudml:132041
[3] 3. P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolationin Rn with applications to finite element methods, Arch. Rational Mech. AnaL,46 (1971), 177-199. Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[4] 4. P. G. CIARLET and P. A. RAVIART, Maximum principle and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2 (1973), 17-31. Zbl0251.65069 MR375802 · Zbl 0251.65069 · doi:10.1016/0045-7825(73)90019-4
[5] 5. H. FUJII, Some remarks on finite element analysis of time-dependent field problems,Theory and practice in finite element structural analysis, ed. by Yamada, Y. and Gallagher, R. H., 91-106, Univ. of Tokyo Press, Tokyo, 1973. Zbl0373.65047 · Zbl 0373.65047
[6] 6. R. GORENFLO, Energy conserving discretizations of diffusion equations, Paper submitted for publication in the Proceedings of the Conference on Numerical Methods in Keszthely/Hungary, 1977. Zbl0466.76086 · Zbl 0466.76086
[7] 7. F. C. HEINRICH, P. S. HUYAKORN, O. C. ZIENKIEWICZ and A. R. MITCHELL, An ” upwind ”finite element scheme for two dimensional convective-transport equation,Int. J. Num. Meth. Engng., 11 (1977), 131-143. Zbl0353.65065 · Zbl 0353.65065 · doi:10.1002/nme.1620110113
[8] 8. F. C. HEINRICH and O. C. ZIENKIEWICZ, The finite element method and ” upwinding ” techniques in the numerical solution of confection dominated flow problems, Preprint for the ASME winter annual meeting on fini te element methods for convection dominated flows, 1979. Zbl0436.76062 · Zbl 0436.76062
[9] 9. T. IKEDA, Artificial viscosity infinite element approximations to the diffusion equation with drift terms, to appear in Lecture Notes in Num. Appl. Anal., 2. Zbl0468.76087 · Zbl 0468.76087
[10] 10. H. KANAYAMA, Discrete models for salinity distribution in a bay-Conservation law and maximum principle, to appear in Theoretical and Applied Mechanics, 28.
[11] 11. F. KIKUCHI, The discrete maximum principle and artificial viscosity in finite element approximations to convective diffusion equations, Institute of Space and Aeronautical Science, University of Tokyo, Report n^\circ 550 (1977).
[12] 12. M. TABATA, A finite element approximation corresponding to the upwind finite differencing, Memoirs of Numerical Mathematics, 4 (1977), 47-63. Zbl0358.65102 MR448957 · Zbl 0358.65102
[13] 13. M. TABATA, Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ., 18 (1978), 327-351. Zbl0391.65038 MR495024 · Zbl 0391.65038
[14] 14. M. TABATA, L \infty -analysis of the finite element method, Lecture Notes in Num. Appl. Anal, 1 (1979) 25-62, Kinokuniya, Tokyo. Zbl0458.65096 MR690436 · Zbl 0458.65096
[15] 15. M. TABATA, Some applications of the upwind finite element method, Theoretical and Applied Mechanics, 27 (1979), 277-282, Univ. of Tokyo Press, Tokyo.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.