×

zbMATH — the first resource for mathematics

On orbits of algebraic groups and Lie groups. (English) Zbl 0467.14008

MSC:
14L30 Group actions on varieties or schemes (quotients)
22E46 Semisimple Lie groups and their representations
14L17 Affine algebraic groups, hyperalgebra constructions
14L24 Geometric invariant theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2307/1969908 · Zbl 0078.13403 · doi:10.2307/1969908
[2] Mumford, Geometric invariant theory 34 (1965) · Zbl 0147.39304 · doi:10.1007/978-3-662-00095-3
[3] DOI: 10.2307/1971168 · Zbl 0406.14031 · doi:10.2307/1971168
[4] DOI: 10.1016/0001-8708(70)90015-0 · Zbl 0196.05802 · doi:10.1016/0001-8708(70)90015-0
[5] Dieudonné, Éléments d’analyse 33 (1970)
[6] Dieudonné, Cours de géométrie algebrique 2 (1974)
[7] DOI: 10.1007/BF02684375 · Zbl 0145.17402 · doi:10.1007/BF02684375
[8] DOI: 10.2748/tmj/1178243073 · Zbl 0211.53302 · doi:10.2748/tmj/1178243073
[9] DOI: 10.1007/BF02566948 · Zbl 0143.05901 · doi:10.1007/BF02566948
[10] Borel, Linear algebraic groups (1969) · Zbl 0205.50503
[11] Vust, Bull. Soc. Math. France 102 pp 317– (1974)
[12] Винберг, Izv. Akad. Nauk SSSR 40 pp 488– (1976)
[13] DOI: 10.1007/BF02684397 · Zbl 0136.30002 · doi:10.1007/BF02684397
[14] Springer, Linear algebraic groups (1981)
[15] Serre, Cohomologie des groupes, suite spectrale, faisceaux 5 (1950)
[16] DOI: 10.1112/blms/9.1.38 · Zbl 0355.14020 · doi:10.1112/blms/9.1.38
[17] DOI: 10.2307/1970359 · Zbl 0153.04501 · doi:10.2307/1970359
[18] Raghunathan, Discrete subgroups of Lie groups 68 (1972) · Zbl 0254.22005 · doi:10.1007/978-3-642-86426-1
[19] Nagata, J. Math. Kyoto Univ. 1 pp 87– (1961)
[20] DOI: 10.1007/BF01389851 · Zbl 0315.14018 · doi:10.1007/BF01389851
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.