×

zbMATH — the first resource for mathematics

Torsion products as homotopy groups. (English) Zbl 0467.18005

MSC:
18G15 Ext and Tor, generalizations, Künneth formula (category-theoretic aspects)
55P42 Stable homotopy theory, spectra
55P47 Infinite loop spaces
55P20 Eilenberg-Mac Lane spaces
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] André, M., Méthode simpliciale en algébre homologique et algébre commutative, Lecture notes in mathematics, 32, (1967), Springer Berlin · Zbl 0154.01402
[2] Artin, M., Grothendieck topologies, (1962), Harvard
[3] Bousfield, A.K.; Friedlander, E.M., Homotopy theory of γ-spaces, spectra, and bisimplicial sets, (), 80-130 · Zbl 0405.55021
[4] Cartan, H.; Eilenberg, S., Homological algebra, (1956), Princeton
[5] MacLane, S., Categories for the working Mathematician, (1971), Springer New York-Heidelberg-Berlin
[6] May, J.P., The spectra associated to permutatite categories, Topology, 17, 225-228, (1978) · Zbl 0417.55011
[7] Quillen, D.G., Higher algebraic K-theory I, (), 85-147 · Zbl 0292.18004
[8] Segal, G.B., Categories and cohomology theories, Topology, 13, 293-312, (1974) · Zbl 0284.55016
[9] Segal, G.B., Classifying spaces and spectral sequences, Publications mathématiques de l’I.H.E.S., 34, 105-112, (1968) · Zbl 0199.26404
[10] Whitehead, G.W., Generalized homology theories, Trans. amer. math. soc., 102, 227-283, (1962) · Zbl 0124.38302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.