×

Module de Frobenius et structure galoisienne des anneaux d’entiers. (French) Zbl 0468.12003


MSC:

11R32 Galois theory
11R42 Zeta functions and \(L\)-functions of number fields
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bass, H., Algebraic \(K\)-Theory (1968), Benjamin: Benjamin New York · Zbl 0174.30302
[2] Cassou-Nogues, Ph, Structure galoisienne des anneaux d’entiers, (Proc. London Math. Soc., 38 (1979)), 545-576 · Zbl 0425.12008
[3] Cassou-Nogues, Ph, Théorèmes de base normale, (Séminaire de théorie des nombres de Bordeaux (1976-1977)), exposé No. 27 · Zbl 0356.12011
[4] Cassou-Nogues, Ph, Quelques théorèmes de base normale d’entiers, Ann. Inst. Fourier (Grenoble), 3, 28 (1978) · Zbl 0368.12004
[5] Cassou-Nogues, Ph, Groupe des classes de l’algèbre d’un groupe métacyclique, J. Algebra, 1 (1976) · Zbl 0346.12010
[6] Fröhlich, A., Arithmetic and Galois module structure for tame extensions, J. Reine Angew. Math., 286/287, 380-439 (1976) · Zbl 0385.12004
[7] Fröhlich, A., Galois module structure, Algebraic number fields, (Proceedings of the Durham Symposium (1977), Academic Press: Academic Press New York) · Zbl 0375.12010
[8] \( \textsc{A. Fröhlich}^n \); \( \textsc{A. Fröhlich}^n \) · Zbl 0469.12002
[9] Galovich, S., The class group of a cyclic \(p\)-group, J. Algebra, 30, 368-387 (1974) · Zbl 0282.13004
[10] Jacobinski, H., On extensions of lattices, Michigan Math. J., 13, 471-475 (1966) · Zbl 0143.05702
[11] Lam, T. Y., Artin exponents of finite groups, J. Algebra, 9, 94-119 (1968) · Zbl 0277.20006
[12] Martinet, J., Character theory and Artin \(L\)-functions, (Proceedings of the Durham Symposium (1977), Academic Press: Academic Press New York) · Zbl 0359.12015
[13] A. MatchettJ. Algebra; A. MatchettJ. Algebra · Zbl 0361.20007
[14] T. Miyata; T. Miyata · Zbl 0427.20005
[15] Reiner, I., Projective class groups of symetric and alternating groups, Linear and Multilinear Algebra, 3, 115-121 (1975)
[16] Swan, R. G.; Evans, E. G., \(K\)-Theory of finite groups and orders, (Lecture Notes in Mathematics No. 149 (1970), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0205.32105
[17] Taylor, M., Locally free class groups of groups of prime power order, J. Algebra, 50 (1978) · Zbl 0377.20006
[18] Taylor, M., On the self-duality of a ring of integers as a Galois module, Invent. Math., 46, 173-177 (1978) · Zbl 0381.12007
[19] Taylor, M., Galois module structure of relative abelian extensions, J. Reine Angew. Math., 303/304, 97-101 (1978) · Zbl 0384.12007
[20] Ullom, S., The exponent of class group, J. Algebra, 29, 124-132 (1974) · Zbl 0278.20016
[21] S. Ullom; S. Ullom
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.