×

zbMATH — the first resource for mathematics

Riemann-Hurwitz formula and p-adic Galois representations for number fields. (English) Zbl 0468.12004

MSC:
11R34 Galois cohomology
11R58 Arithmetic theory of algebraic function fields
14H52 Elliptic curves
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. BRUMER, Galois groups of extensions of algebraic number fields with given ramifica-tion, Mich. Jour. Math. 13 (1966), 33-40. · Zbl 0141.04803 · doi:10.1307/mmj/1028999477
[2] C. CHEVALLEY AND A. WEIL, Uber das Verhalten der Integrale erster Gattung bei Auto morphismen des Funktionenkrpers, Hamb. Abh. 10 (1934), 358-361. Zentralblatt MATH: · Zbl 0009.16001 · doi:10.1007/BF02940687 · www.zentralblatt-math.org
[3] B. FERRERO AND L. WASHINGTON, The Iwasawa invariant p vanishes for abelian numbe fields, Ann. Math. 109 (1979), 377-395. JSTOR: · Zbl 0443.12001 · doi:10.2307/1971116 · links.jstor.org
[4] K. Iwasawa, On -extensions of algebraic number fields, Bull. Amer. Math. Soc. 6 (1959), 183-226. · Zbl 0089.02402 · doi:10.1090/S0002-9904-1959-10317-7
[5] K. Iwasawa, On Zrextensions of algebraic number fields, Ann. Math. 98 (1973), 246-326 JSTOR: · Zbl 0285.12008 · doi:10.2307/1970784 · links.jstor.org
[6] Y. KIDA, ^-extensions of CM-fields and cyclotomic invariants, J. Number Theory 1 (1980), 519-528. · Zbl 0455.12007 · doi:10.1016/0022-314X(80)90042-6
[7] S. LANG, Rapport sur la Cohomologie des Groupes, W. A. Benjamin, Inc., New York Amsterdam, 1966. · Zbl 0171.28903
[8] J. -P. SERRE, Corps Locaux, Hermann, Paris, 1962
[9] J. -P. SERRE, Cohomologie Galoisienne, Lecture Notes in Math. 5, Springer-Verlag, Berlin Heidelberg-New York, 1964.
[10] K. WINGBERG, Die Einheitengruppe von p-Erweiterungen regular p-adischer Zahlkrpe als Galoismodul, Jour, fur die reine u. angew. Math. 305 (1979), 206-214. · Zbl 0393.12024 · doi:10.1515/crll.1979.305.206 · crelle:GDZPPN00219578X · eudml:152087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.