Valentini, Robert C.; Madan, Manohar L. Automorphisms and holomorphic differentials in characteristic \(p\). (English) Zbl 0468.14008 J. Number Theory 13, 106-115 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 13 Documents MSC: 14H05 Algebraic functions and function fields in algebraic geometry 14G20 Local ground fields in algebraic geometry 20G05 Representation theory for linear algebraic groups 11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.) 14L30 Group actions on varieties or schemes (quotients) Keywords:characteristic p; automorphism group of function field; holomorphic differentials; cyclic extensions PDF BibTeX XML Cite \textit{R. C. Valentini} and \textit{M. L. Madan}, J. Number Theory 13, 106--115 (1981; Zbl 0468.14008) Full Text: DOI References: [1] Chevalley, C; Weil, A, Über das verhalten der integrale 1. gattung bei automorphismen des funktionenkörpers, Abh. math. sem. univ. Hamburg, 10, 358-361, (1934) · JFM 60.0098.01 [2] Hasse, H, Theorie der relativ-zyklischen algebraischen funktionenkörper, insbesondere bei endlichem konstantenkörper, J. reine angew. math., 172, 37-45, (1935) · JFM 60.0097.01 [3] Hurwitz, A, Über algebraische gebilde mit eindeutigen transformationen in sich, Math. ann., 41, 403-442, (1893) · JFM 24.0380.02 [4] Madan, M.L; Madden, D.J, The exponent of class groups in congruence function fields, Acta arith., 32, 183-205, (1977) · Zbl 0371.12010 [5] Madden, D.J, Arithmetic in generalized Artin-Schreier extensions of k(x), J. number theory, 10, 303-323, (1978) · Zbl 0384.12008 [6] Tamagawa, T, On unramified extensions of algebraic function fields, (), 548-551 · Zbl 0044.03101 [7] Weil, A, Über matrizenringe auf riemannschen flächen und den Riemann-rochschen satz, Abh. math. sem. univ. Hamburg, 11, 110-115, (1935) · JFM 61.0123.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.