Cline, Randall E. Note on an extension of the Moore-Penrose inverse. (English) Zbl 0468.15003 Linear Algebra Appl. 40, 19-23 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 Documents MSC: 15A09 Theory of matrix inversion and generalized inverses 15B33 Matrices over special rings (quaternions, finite fields, etc.) Keywords:Moore-Penrose inverse PDFBibTeX XMLCite \textit{R. E. Cline}, Linear Algebra Appl. 40, 19--23 (1981; Zbl 0468.15003) Full Text: DOI References: [1] Ben-Israel, A.; Greville, T. N.E., Generalized Inverses: Theory and Applications (1974), Wiley: Wiley New York · Zbl 0305.15001 [2] Cline, R. E.; Greville, T. N.E., A Drazin inverse for rectangular matrices, Linear Algebra and Appl., 29, 53-62 (1980) · Zbl 0433.15002 [3] Drazin, M. P., Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65, 506-513 (1958) · Zbl 0083.02901 [4] Gabriel, R., Das verallgemeinerte Inverse in Algebren, Rev. Roumaine Math. Pures Appl., XX, 311-324 (1975) · Zbl 0313.15006 [5] R.E. Hartwig, D-inverse; R.E. Hartwig, D-inverse [6] Pearl, M. H., Generalized inverses of matrices with entries taken from an arbitrary field, Linear Algebra and Appl., 1, 571-587 (1968) · Zbl 0186.33602 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.