Perkins, Edwin Local time is a semi-martingale. (English) Zbl 0468.60070 Z. Wahrscheinlichkeitstheor. Verw. Geb. 60, 79-117 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 12 Documents MSC: 60J55 Local time and additive functionals 60G48 Generalizations of martingales Keywords:local time; canonical decomposition of local time; semi-martingale × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Barlow, M. T., On Brownian Local Time, Séminaire de Probabilités XV, 189-190 (1981), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0454.60067 [2] Chung, K. L.; Durrett, R., Downcrossings and local time, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 35, 147-149 (1976) · Zbl 0348.60111 · doi:10.1007/BF00533319 [3] Fisk, D. L., Quasi-martingales, Trans. Amer. Math. Soc., 120, 369-389 (1965) · Zbl 0133.40303 [4] Hunt, G., Martingales et Processus de Markov (1966), Paris: Dunod, Paris · Zbl 0158.35802 [5] Knight, F. B., Random walks and a sojourn density process of Brownian motion, Trans. Amer. Math. Soc., 109, 56-86 (1963) · Zbl 0119.14604 [6] McKean, H. P., Stochastic Integrals (1969), New York: Academic Press, New York · Zbl 0191.46603 [7] Ray, D. B., Sojourn times of diffusion processes. Ill, J. Math., 7, 615-630 (1963) · Zbl 0118.13403 [8] Walsh, J. B., Downcrossings and the Markov property of local time, Temps Locaux, Astérisque, 52-53, 89-115 (1978) [9] Walsh, J. B., Excursions and local time, Temps Locaux, Astérisque, 52-53, 159-192 (1978) [10] Williams, D., Lévy’s downcrossing theorem, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 40, 157-158 (1977) · Zbl 0372.60115 · doi:10.1007/BF00532879 [11] Williams, D., Conditional excursion theory, Séminaire de Probabilités XIII, 490-494 (1979), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0422.60058 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.