zbMATH — the first resource for mathematics

Sequential approach to simultaneous estimation of the mean and variance. (English) Zbl 0468.62078

62L12 Sequential estimation
62F10 Point estimation
Full Text: DOI EuDML
[1] Anscombe, F.J.: Large sample theory of sequential estimation. Proc. Camb. Phil. Soc.48, 1952, 600–607. · Zbl 0047.13401 · doi:10.1017/S0305004100076386
[2] Chow, Y.S., andH. Robbins: On the asymptotic theory of fixed width sequential confidence intervals for the mean. Ann. Math. Statist.36, 1965, 457–462. · Zbl 0142.15601 · doi:10.1214/aoms/1177700156
[3] Mukhopadhyay, N.: Sequential Methods in estimation and prediction. Ph. D. Thesis, Indian Statistical Institute, 1976. · Zbl 0331.62062
[4] –: Remarks on sequential estimation of a linear function of two means: the normal case. Metrika24, 1977, 197–201. · Zbl 0368.62063 · doi:10.1007/BF01893408
[5] Robbins, H.: Sequential estimation of mean of a normal population. Probability and Statistics (H. Cramer’s Volume). Uppsala 1959, 235–245.
[6] Robbins, H., G. Simons, andN. Staar: A sequential analogue of the Behrens-Fisher problem. Ann. Math. Statist.38, 1967, 1384–1391. · Zbl 0157.48105 · doi:10.1214/aoms/1177698694
[7] Sproule, R.N.: Asymptotic properties ofU-statistics, Amer. Math. Soc. Transactions199, 1974, 55–64. · Zbl 0307.60028
[8] Srivastava, M.S.: On fixed width confidence bounds for regression parameters and mean vector. J. Roy. Stat. Soc., B29, 1967, 132–140. · Zbl 0152.37002
[9] –: On a sequential analogue of the Behrens-Fisher problem. J. Roy. Stat. Soc., B32, 1970, 144–148. · Zbl 0209.50404
[10] Starr, N.: On the asymptotic efficiency of a sequential procedure for estimating the mean. Ann. Math. Statist.37, 1966, 1173–1185. · Zbl 0144.40801 · doi:10.1214/aoms/1177699263
[11] Starr, N., andM. Woodroofe: Remarks on sequential point estimation. Proc. Nat. Acad. Sci. USA61, 1969, 285–288. · Zbl 0202.17304 · doi:10.1073/pnas.63.2.285
[12] Stein, C.: A two sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Statist.16, 1945, 243–258. · Zbl 0060.30403 · doi:10.1214/aoms/1177731088
[13] Wiener, N.: The ergodic theorem. Duke J. Math.5, 1939, 1–18. · JFM 65.0516.04 · doi:10.1215/S0012-7094-39-00501-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.