×

zbMATH — the first resource for mathematics

On the connectedness of degeneracy loci and special divisors. (English) Zbl 0469.14018

MSC:
14H40 Jacobians, Prym varieties
14C20 Divisors, linear systems, invertible sheaves
14B05 Singularities in algebraic geometry
14M12 Determinantal varieties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arbarello, E., Cornalba, M., Griffiths, P. & Harris, J. Geometry of Algebraic Curves. To appear. · Zbl 0559.14017
[2] Artin, M., Grothendieck, A. & Verdier, J. L.,Théorie des topos et cohomologie étale des schémas. Springer Lecture Notes in Math., 305 (1973). [SGA4].
[3] Fulton, W. & Lazarsfeld, R., Connectivity and its applications in algebraic geometry. to appear in theProceddings of the First Midwest Algebraic Geometry Conference (Springer Lecture Notes). · Zbl 0484.14005
[4] Gieseker, D., Stable curves and special divisors, I. Preprint. · Zbl 0522.14015
[5] Griffiths, P. &Harris, J., On the variety of special linear systems on a general algebraic curve.Duke Math. J., 47 (1980), 237–272. · Zbl 0446.14011 · doi:10.1215/S0012-7094-80-04717-1
[6] Hartshorne, R., Complete intersections and connectedness.Amer. J. Math., 84 (1962), 497–508. · Zbl 0108.16602 · doi:10.2307/2372986
[7] –, Ample vector bundles.Publ. Math. IHES, 29 (1966), 63–94. · Zbl 0173.49003
[8] Hartshorne, R. Ample subvarieties of algebraic varieties. Springer Lecture Notes in Math. 156 (1970). · Zbl 0208.48901
[9] Kempf, G.,Schubert methods with an application to algebraic curves Publ. Math. Centrum, Amsterdam, 1971. · Zbl 0223.14018
[10] Kempf, G. &Laksov, D., The determinatal formula of Schubert calculus.Acta Math., 132 (1974), 153–162. · Zbl 0295.14023 · doi:10.1007/BF02392111
[11] Kleiman, S. &Laksov, D., On the existence of special divisors.Amer. J. Math., 94 (1972), 431–436. · Zbl 0251.14005 · doi:10.2307/2374630
[12] – Another proof of the existence of special divisors.Acta Math., 132 (1974), 163–176. · Zbl 0286.14005 · doi:10.1007/BF02392112
[13] McCrory, C., Zeeman’s filtration of homology.Trans. Amer. Math. Soc., 250 (1979), 147–166. · Zbl 0363.57014
[14] Schwartzenberger, R. L. E., Jacobians and symmetric products.Illinois J. Math., 7 (1963), 257–268. · Zbl 0123.38104
[15] Sommese, A., Subvarieties of abelian varieties.Math. Ann., 233 (1978), 229–256. · Zbl 0381.14007 · doi:10.1007/BF01405353
[16] Vilonen, K.,The cohomology of affine varieties. Masters thesis at Brown University, June 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.