×

Locally injective G-sheaves of abelian groups. (English) Zbl 0469.18006


MSC:

18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
18D35 Structured objects in a category (MSC2010)
18B25 Topoi
20K40 Homological and categorical methods for abelian groups
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] 1 R. Godement , Topologie Algébrique et Théorie des faisceaux , Hermann , 1958 . MR 102797 | Zbl 0080.16201 · Zbl 0080.16201
[2] 2 A. Grothendieck , Sur quelques points d’algèbre homologique , Tôhoku Math. J. 9 ( 1957 ), 119 - 221 . Article | MR 102537 | Zbl 0118.26104 · Zbl 0118.26104
[3] 3 R. Harting , Lokal injektive abel sche Gruppen und intemes Coprodukt abelscher Gruppen , Seminarberichte Femuniv. Hagen 7 ( 1980 ), 121 - 130 .
[4] 4 R. Harting , Parametrised coproduct of abelian group objects in a topos , Com. Algebra ( to appear). · Zbl 0477.18008
[5] 5 R. Harting , Intemal injectivity of abelian group objects in a topos , Comm. Algebra (to appear).
[6] 6 R. Harting , A remark on injectivity of sheaves of abelian group s , Arch. Math. Zbl 0451.18004 · Zbl 0451.18004
[7] 7 J.R. Isbell , Atomless parts of spaces , Math. Scand. 31 ( 1972 ), 5 - 32 . MR 358725 | Zbl 0246.54028 · Zbl 0246.54028
[8] 8 P.T. Johnstone , Topos Theory , Acadmic Pre ss , 1977 . MR 470019 | Zbl 0368.18001 · Zbl 0368.18001
[9] 9 P.T. Johnstone , Tychonoff’s Theorem without the axiom of choice , Fund. Math. (to appear). Article | MR 641111 | Zbl 0503.54006 · Zbl 0503.54006
[10] 10 H. Schubert , Categories , Springer , 1972 . MR 349793 | Zbl 0253.18002 · Zbl 0253.18002
[11] 11 B.R. Tennison , Sheaf Theory , L.M. S. Lecture Notes Series 20 , Cambridge University Press , 1975 . MR 404390 | Zbl 0313.18010 · Zbl 0313.18010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.