×

zbMATH — the first resource for mathematics

Rings which are semilattices of Archimedean semigroups. (English) Zbl 0469.20038

MSC:
20M25 Semigroup rings, multiplicative semigroups of rings
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Cherubini Spolentini, A. and A. Varisco,On Putcha’s Q-semigroups, Semigroup Forum 18(1979), 313–317. · Zbl 0429.20051
[2] –,Quasi commutative semigroups and {\(\sigma\)}-reflexive semigroups, Semigroup Forum 19(1980), 313–322. · Zbl 0432.20053
[3] Chrislock, J.,On medial semigroups, J. Algebra 12(1969), 1–9. · Zbl 0187.29102
[4] Clifford, A. H.,Semigroups admitting relative inverses, Annals of Math. 42(1941), 1037–1049. · Zbl 0063.00920
[5] McCoy, N. H.,The theory of rings, MacMillan Co., N.Y. (1964). · Zbl 0121.03803
[6] Nordahl, T.,Semigroups satisfying (xy)m=xmym, Semigroup Forum 8(1974), 332–346. · Zbl 0298.20049
[7] Putcha, M. S.,Semilattice decompositions of semigroups, Semigroup Forum 6(1973), 12–34. · Zbl 0256.20074
[8] –,Band of t-archimedean semigroups, Semigroup Forum 6(1973), 232–239. · Zbl 0262.20070
[9] Putcha, M. S. and J. Weissglass,A semilattice decomposition into semigroups with at most one idempotent, Pacific J. Math. 39(1971), 225–228. · Zbl 0212.04203
[10] Tamura, T.,On Putcha’s theorem concerning semilattice of archimedean semigroups, Semigroup Forum 4(1972), 83–86. · Zbl 0256.20075
[11] –,Quasi-orders, generalized archimedeaness, semilattice decompositions, Math. Nachr. 68(1975), 201–220. · Zbl 0325.06002
[12] Tamura, T. and N. Kimura,On decomposition of a commutative semigroup, Kodai Math. Sem. Rep. 4(1954), 109–112. · Zbl 0058.01503
[13] Tamura, T. and J. Shafer,On exponential semigroups I, Proc. Japan Acad. 48(1972), 77–80. · Zbl 0251.20063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.