Gluskin, E. D. Diameter of the Minkowski compactum is approximately equal to n. (English. Russian original) Zbl 0469.46017 Funct. Anal. Appl. 15, 57-58 (1981); translation from Funkts. Anal. Prilozh. 15, No. 1, 72-73 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 ReviewsCited in 43 Documents MSC: 46B20 Geometry and structure of normed linear spaces 41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces) 47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.) Keywords:Banach Mazur distance; Hilbert Schmidt norm; Minkowski compactum; diameter Citations:Zbl 0404.46009 PDF BibTeX XML Cite \textit{E. D. Gluskin}, Funct. Anal. Appl. 15, 57--58 (1981; Zbl 0469.46017); translation from Funkts. Anal. Prilozh. 15, No. 1, 72--73 (1981) Full Text: DOI OpenURL References: [1] M. I. Kadets, Mat. Anal., Itogi Nauki Tekh., Moscow, VINITI,13, 99-127 (1975). [2] F. John, Courant Anniversary Volume (1948), pp. 187-204. [3] S. Szarek, Bull. Acad. Polon. Sci. Ser. Sci. Math.,26, No. 8, 691-694 (1978). [4] S. Szarek and N. Tomczak-Jaegermann, Inst. Math. PAN, Preprint No. 137, Warszawa (1978). [5] S. V. Kislyakov, Leningr. Otd. Mat. Inst., Preprint P-6-80, Leningrad (1980). [6] T. Figiel, J. Lindenstrauss, and V. D. Milman, Acta Math.,139, Nos. 1-2, 53-94 (1977). · Zbl 0375.52002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.