×

Fourier analysis and limit theorems for convolution semigroups on a locally compact group. (English) Zbl 0469.60014


MSC:

60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
60F05 Central limit and other weak theorems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akemann, Ch.A; Walter, M.E, Non-abelian pontriagin duality, Duke math. J., 39, 451-463, (1972) · Zbl 0243.43005
[2] Berg, Chr; Forst, G, Potential theory on locally compact abelian groups, (1975), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0308.31001
[3] Boseck, H, Über darstellungen lokal-kompakter gruppen, Math. nachr., 74, 233-251, (1976) · Zbl 0343.22006
[4] Bourbaki, N; Bourbaki, N, “eléments de mathématique,“ livre VI, “intégration”, (1969), Hermann Paris, Chap. IX · Zbl 0189.14201
[5] Bruhat, F, Distributions sur un groupe localement compact et applications à l’étude des representation des groupes p-adiques, Bull. soc. math. France, 89, 43-76, (1961) · Zbl 0128.35701
[6] Carnal, H, Systèmes infinitésimaux sur LES groupes topologiques compacts, (), 43-49 · Zbl 0231.60007
[7] Duflo, M, Semigroups of complex measures on a locally compact group, () · Zbl 0307.43002
[8] Gnedenko, B.V; Kolmogorov, A.N, Limit distributions for sums of independent random variables, (1962), Addison-Wesley Reading/Palo Alto/London · Zbl 0056.36001
[9] Grenander, U, Probabilities on algebraic structures, (1968), Almqvist & Wiksells Stockholm · Zbl 0139.33401
[10] Hazod, W, Probabilities on totally disconnected locally compact groups, () · Zbl 0387.60013
[11] Hazod, W, Stetige halbgruppen von wahrscheinlichkeitsmaβen und erzeugende distributionen, ()
[12] Hewitt, E; Ross, K.A, Abstract harmonic analysis I, II, (1970), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0213.40103
[13] Heyer, H, L’analyse de Fourier non-commutative et applications à la thèorie des probabilités, Ann. inst. H. Poincaré, 4, 143-164, (1968) · Zbl 0165.19102
[14] Heyer, H, Infinitely divisible probability measures on compact groups, () · Zbl 0243.60010
[15] Heyer, H, Probability measures on locally compact groups, (1977), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0373.60011
[16] Kelley, J.L, General topology, (1975), Springer-Verlag New York/Heidelberg/Berlin · Zbl 0306.54002
[17] Lashof, R, Lie algebras of locally compact groups, Pacific J. math., 7, 1145-1162, (1957) · Zbl 0081.02204
[18] Naimark, M.A, Normed algebras, (1972), Wolters-Noordhoff Groningen · Zbl 0073.08902
[19] Parthasarathy, K.R, The central limit theorem for the rotation group, Theor. probability appl., 9, 248-257, (1964)
[20] Parthasarathy, K.R, Probability measures on metric spaces, (1967), Academic Press New York/London · Zbl 0153.19101
[21] Siebert, E, Wahrscheinlichkeitsmaβe auf lokalkompakten maximal fastperiodischen gruppen, (), Tübingen
[22] Siebert, E, Über die erzeugung von faltungshalbgruppen auf beliebigen lokalkompakten gruppen, Math. Z., 131, 313-333, (1973) · Zbl 0245.22008
[23] Siebert, E, Convergence and convolutions of probability measures on a topological group, Ann. prob., 4, 433-443, (1976) · Zbl 0338.60012
[24] Siebert, E, On the Lévy-chintschin formula on locally compact maximally almost periodic groups, Math. scand., 41, 331-346, (1977) · Zbl 0376.60012
[25] Siebert, E, Two theorems on Poisson measures on a topological group, Manuscripta math., 24, 179-190, (1978) · Zbl 0382.60012
[26] Siebert, E, A new proof of the generalized continuity theorem of paul Lévy, Math. ann., 233, 257-259, (1978) · Zbl 0362.60028
[27] Urbanik, K, Gaussian measures on locally compact abelian topological groups, Studia math., 19, 77-88, (1960) · Zbl 0099.01704
[28] Warner, G, Harmonic analysis on semi-simple Lie groups I, (1972), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0265.22020
[29] Wehn, D, Probabilities on Lie groups, (), 791-795 · Zbl 0111.14104
[30] Yosida, K, Functional analysis, (1971), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0217.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.