Delfour, M.; Hager, W.; Trochu, F. Discontinuous Galerkin methods for ordinary differential equations. (English) Zbl 0469.65053 Math. Comput. 36, 455-473 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 120 Documents MSC: 65L05 Numerical methods for initial value problems involving ordinary differential equations Keywords:Galerkin methods; discontinuous piecewise polynomial spaces; one-step schemes × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/1971), 322 – 333. · Zbl 0214.42001 · doi:10.1007/BF02165003 [2] I. Babuška & A. K. Aziz, ”Survey lectures on the mathematical foundations of the finite element method,” The Mathematical Foundation of the Finite Element Method with Application to Partial Differential Equations , Academic Press, New York, 1973. [3] I. Babuška and J. Osborn, Analysis of finite element methods for second order boundary value problems using mesh dependent norms, Numer. Math. 34 (1980), no. 1, 41 – 62. · Zbl 0404.65055 · doi:10.1007/BF01463997 [4] I. Babuška, J. Osborn, and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), no. 152, 1039 – 1062. · Zbl 0472.65083 [5] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129 – 151 (English, with loose French summary). · Zbl 0338.90047 [6] J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc. 3 (1963), 185 – 201. · Zbl 0223.65031 [7] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50 – 64. · Zbl 0123.11701 [8] J. C. Butcher, Integration processes based on Radau quadrature formulas, Math. Comp. 18 (1964), 233 – 244. · Zbl 0123.11702 [9] J. C. Butcher, An algebraic theory of integration methods, Math. Comp. 26 (1972), 79 – 106. · Zbl 0258.65070 [10] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058 [11] M. Crouzeix, Sur l’Approximation des Équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta, Thèse de doctorat d’état es-sciences mathématiques, Université de Paris VI, mars, 1975. [12] M. C. Delfour, The linear quadratic optimal control problem for hereditary differential systems: theory and numerical solution, Appl. Math. Optim. 3 (1976/77), no. 2/3, 101 – 162. · Zbl 0404.49010 · doi:10.1007/BF01441963 [13] M. C. Delfour & F. Dubeau, Piecewise Discontinuous Polynomial Approximation of Nonlinear Ordinary Differential Equations, Centre de Recherches Mathématiques, Université de Montréal, Report #865, 1979. · Zbl 0633.65068 [14] M. C. Delfour and F. Trochu, Discontinuous finite element methods for the approximation of optimal control problems governed by hereditary differential systems, Distributed parameter systems: modelling and identification (Proc. IFIP Working Conf., Rome, 1976) Springer, Berlin, 1978, pp. 256 – 271. Lecture Notes in Control and Informat. Sci., Vol. 1. · Zbl 0498.49017 [15] Michel Defour and François Trochu, Approximation des équations différentielles et problèmes de commande optimale, Ann. Sci. Math. Québec 1 (1977), no. 2, 211 – 225 (French). Compte Rendu du Deuxième Colloque CRM-IRIA (Centre Recherche Math., Univ. Montréal, Montreal, Que., 1976). · Zbl 0418.65035 [16] M. C. Delfour & F. Trochu, Discontinuous Approximation of Ordinary Differential Equations and Application to Optimal Control Problems, Centre de Recherches Mathématiques, Université de Montréal, Report #751, 1977. · Zbl 0418.65035 [17] Bernie L. Hulme, Discrete Galerkin and related one-step methods for ordinary differential equations, Math. Comp. 26 (1972), 881 – 891. · Zbl 0272.65056 [18] Bernie L. Hulme, One-step piecewise polynomial Galerkin methods for initial value problems, Math. Comp. 26 (1972), 415 – 426. · Zbl 0265.65038 [19] P. Lesaint & P. A. Ravlart, ”On a finite element method for solving the neutron transport equation,” Mathematical Aspects of Finite Elements in Partial Differential Equations , Academic Press, New York, 1974, pp. 89-123. [20] J. T. Oden and L. C. Wellford Jr., Discontinuous finite element approximations for the analysis of acceleration waves in elastic solids, The mathematics of finite elements and applications, II (Proc. Second Brunel Univ. Conf., Inst. Math. Appl., Uxbridge, 1975) Academic Press, London, 1976, pp. 269 – 285. [21] Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. · Zbl 0356.65096 [22] L. C. Wellford Jr. and J. T. Oden, Discontinuous finite-element approximations for the analysis of shock waves in nonlinearly elastic materials, J. Computational Phys. 19 (1975), no. 2, 179 – 210. · Zbl 0328.73034 [23] L. C. Wellford Jr. and J. T. Oden, A theory of discontinuous finite element Galerkin approximations of shock waves in nonlinear elastic solids. I. Variational theory, Comput. Methods Appl. Mech. Engrg. 8 (1976), no. 1, 1 – 16. , https://doi.org/10.1016/0045-7825(76)90049-9 L. C. Wellford Jr. and J. T. Oden, A theory of discontinuous finite element Galerkin approximations of shock waves in nonlinear elastic solids. II. Accuracy and convergence, Comput. Methods Appl. Mech. Engrg. 8 (1976), no. 1, 17 – 36. · Zbl 0341.73043 · doi:10.1016/0045-7825(76)90050-5 [24] L. C. Wellford Jr. and J. T. Oden, A theory of discontinuous finite element Galerkin approximations of shock waves in nonlinear elastic solids. I. Variational theory, Comput. Methods Appl. Mech. Engrg. 8 (1976), no. 1, 1 – 16. , https://doi.org/10.1016/0045-7825(76)90049-9 L. C. Wellford Jr. and J. T. Oden, A theory of discontinuous finite element Galerkin approximations of shock waves in nonlinear elastic solids. II. Accuracy and convergence, Comput. Methods Appl. Mech. Engrg. 8 (1976), no. 1, 17 – 36. · Zbl 0341.73043 · doi:10.1016/0045-7825(76)90050-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.