Gupta, Radhey S.; Kumar, Dhirendra Complete numerical solution of the oxygen diffusion problem involving a moving boundary. (English) Zbl 0469.65087 Comput. Methods Appl. Mech. Eng. 29, 233-239 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 9 Documents MSC: 65Z05 Applications to the sciences 76Z05 Physiological flows 92Cxx Physiological, cellular and medical topics 35K05 Heat equation 35R35 Free boundary problems for PDEs Keywords:numerical results; oxygen diffusion; blood stream; moving boundary problem; variable time step methods Citations:Zbl 0247.65064 PDF BibTeX XML Cite \textit{R. S. Gupta} and \textit{D. Kumar}, Comput. Methods Appl. Mech. Eng. 29, 233--239 (1981; Zbl 0469.65087) Full Text: DOI References: [1] Crank, J.; Gupta, R. S., A moving boundary problem arising from the diffusion of oxygen in absorbing tissue, J. Inst. Math. Appl., 10, 19-33 (1972) · Zbl 0247.65064 [2] Crank, J.; Gupta, R. S., A method for solving moving boundary problems in heat flow using cubic splines or polynomials, J. Inst. Math. Appl., 10, 296-304 (1972) · Zbl 0299.65049 [3] Gupta, R. S., Moving grid method without interpolations, Comput. Meths. Appl. Mech. Engrg., 4, 143-152 (1974) · Zbl 0284.76072 [4] Hansen, E.; Hougaard, P., On a moving boundary problem from biomechanics, J. Inst. Math. Appl., 13, 385-398 (1974) · Zbl 0307.45016 [5] Ferris, D. H.; Hill, S., On the numerical solution of a one-dimensional diffusion problem with a moving boundary, NPL Rept. NAC, 45 (1974) [6] Berger, A. E.; Ciment, M.; Rogers, J. C.W., Numerical solution of a diffusion consumption problem with a free boundary, SIAM J. Numer. Anal., 12, 646-672 (1975) · Zbl 0317.65032 [7] Miller, J. V.; Morton, K. W.; Baines, M. J., A. finite element moving boundary computation with an adaptive mesh, J. Inst. Math. Appl., 22, 467-477 (1978) · Zbl 0394.65032 [8] (Ockendon, J. R.; Hodgkins, W. R., Moving Boundary Problems in Heat Flow and Diffusion (1975), Clarendon: Clarendon Oxford) · Zbl 0295.76064 [9] Furzeland, R. M., A survey of the formulation and solution of free and moving boundary (Stefan) problems, Brunel Univ. Tech. Rept. TR/76 (1977) · Zbl 0367.65050 [10] Douglas, J.; Gallie, T. M., On the numerical integration of a parabolic differential equation subject to a moving boundary condition, Duke Math. J., 22, 557-570 (1955) · Zbl 0066.10503 [11] Gooding, J. S.; Khader, M. S., One dimensional inward solidification with a convective boundary condition, AFS Cast Metals Res. J., 10, 26-29 (1974) [12] Gupta, R. S.; Kumar, D., A modified variable time step method for the one-dimensional Stefan problem, Comput. Meths. Appl. Mech. Engrg., 23, 101-109 (1980) · Zbl 0446.76070 [13] Gupta, R. S.; Kumar, D., Variable time step methods for one-dimensional Stefan problem with mixed boundary condition, Internat. J. Heat Mass Transfer, 24, 251-259 (1981) · Zbl 0462.76095 [14] Yuen, W. W.; Kleinman, A. M., Application of a variable time-step finite-difference method for the one-dimensional melting problem including the effect of subcooling, AIChE J., 26, 828-832 (1980) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.