×

lambda-rings and algebraic K-theory. (English) Zbl 0471.18007


MSC:

18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
20J05 Homological methods in group theory
16L30 Noncommutative local and semilocal rings, perfect rings
16N40 Nil and nilpotent radicals, sets, ideals, associative rings
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atiyah, M., Characters and the cohomology of finite groups, Publ. Math. IHES, 9, 247-288 (1961) · Zbl 0107.02303
[2] Atiyah, M., \(K\)-Theory (1967), Benjamin: Benjamin New York · Zbl 0159.53302
[3] Atiyah, M.; Segal, G., Exponential isomorphisms of λ-rings, Quart. J. Math. Oxford Ser., 22, 371-378 (1971) · Zbl 0226.13008
[4] Atiyah, M.; Tall, D., Group representations, λ-rings and the \(J\)-homomorphism, Topology, 8, 253-297 (1969) · Zbl 0159.53301
[5] Berthelot, P., Le \(K\) d’un fibre projectif: calculs et conséquences, (Lecture Notes in Mathematics. Lecture Notes in Mathematics, Théorie des intersections et théorème de Riemann-Roch, 225 (1971), Springer-Verlag: Springer-Verlag Berlin), SGA 6 · Zbl 0225.14003
[6] Bloch, S., Algebraic \(K\)-theory and crystalline cohomology, Publ. Math. IHES, 47, 187-268 (1977) · Zbl 0388.14010
[7] Dennis, R.; Stein, M., \(K_2\) of radical ideals and semi-local rings revisited, (Lecture Notes in Mathematics. Lecture Notes in Mathematics, Algebraic \(K\)-theory II, 342 (1972), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0271.18012
[8] Fiedorowicz, Z., A note on the spectra of algebraic \(K\)-theory, Topology, 16, 417-421 (1977) · Zbl 0391.18013
[9] Gersten, S., Some exact sequences in the higher \(K\)-theory of rings, (Lecture Notes in Mathematics. Lecture Notes in Mathematics, Algebraic \(K\)-theory I, 341 (1972), Springer-Verlag: Springer-Verlag Berlin), 211-243 · Zbl 0289.18011
[10] Grothendieck, A., La théorie des classes de Chern, Bull. Soc. Math., 86, 137-154 (1958) · Zbl 0091.33201
[11] Kaplansky, I., Infinite abelian groups (1971), University of Michigan Press: University of Michigan Press Ann Arbor
[12] C. Kratzer, Opérations d’Adams en théorie de la représentation linéaire des groups, Preprint.; C. Kratzer, Opérations d’Adams en théorie de la représentation linéaire des groups, Preprint.
[13] Lang, S., Algebraic groups over finite fields, Amer. J. Math., 78, 555-563 (1956) · Zbl 0073.37901
[14] Loday, J.-L., \(K\)-théorie algébrique et représentation des groupes, Ann. Sci. École Norm. Sup., 9, 3, 309-377 (1976), 4e serie · Zbl 0362.18014
[15] Lonsted, K., An algebraization of vector bundles on còmpact manifolds, J. Pure Appl. Algebra, 2, 193-207 (1972) · Zbl 0236.55016
[16] Manin, Y., Lectures on the \(K\)-functor in algebraic geometry, Russian Math. Surveys, 24, 1-89 (1969) · Zbl 0204.21302
[17] May, J. P., \(E^∞\) ring spaces and \(E^∞\) ring spectra, (Lecture Notes in Mathematics, 557 (1977), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1228.55010
[18] Milnor, J., Introduction to algebraic \(K\)-theory (1971), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0237.18005
[19] D. Quillen, Cohomology of groups, Actes Congrès Intern. Math. 2, 47-51.; D. Quillen, Cohomology of groups, Actes Congrès Intern. Math. 2, 47-51. · Zbl 0225.18011
[20] Quillen, D., On the cohomology and \(K\)-theory of the general linear group over a finite field, Ann. of Math., 96, 552-586 (1972) · Zbl 0249.18022
[21] Quillen, D., Higher algebraic \(K\)-theory I, (Lecture Notes in Mathematics. Lecture Notes in Mathematics, Algebraic \(K\)-theory I, 341 (1972), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1198.19001
[22] Quillen, D., Finite generation of the groups \(K_i\) of rings of algebraic integers, (Lecture Notes in Mathematics. Lecture Notes in Mathematics, Algebraic \(K\)-theory I, 341 (1971), Springer-Verlag: Springer-Verlag Berlin)
[23] Quillen, D., Algebraic \(K\)-theory, Proc. Int. Cong. Math. (1974), Vancouver
[24] Quillen, D., Characteristics classes of representations, (Lecture Notes in Mathematics, 551 (1976), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0214.50502
[25] Rector, D., Modular characters and \(K\)-theory with coefficients in a finite field, J. Pure Appl. Algebra, 4, 137-158 (1974) · Zbl 0323.18009
[26] J.-P. Serre, Le groupe de Grothendieck des schémas en groupes reductifs, Publ. Math. IHES 34.; J.-P. Serre, Le groupe de Grothendieck des schémas en groupes reductifs, Publ. Math. IHES 34.
[27] Soulé, C., \(K\)-théorie de \(Z\) et cohomologie étale, C.R. Acad. Sci. Paris, 286, 1179-1181 (1978) · Zbl 0394.55004
[28] Swan, R., Algebraic \(K\)-theory, (Lecture Notes in Mathematics, 76 (1968), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0193.34601
[29] R. Thomason, On first-quadrant spectral sequences in algebraic \(K\); R. Thomason, On first-quadrant spectral sequences in algebraic \(K\) · Zbl 0425.18013
[30] J.C. Hausmann and D. Husemoller, Acyclic maps, Preprint.; J.C. Hausmann and D. Husemoller, Acyclic maps, Preprint. · Zbl 0412.55008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.