×

zbMATH — the first resource for mathematics

Prime graph components of finite groups. (English) Zbl 0471.20013

MSC:
20D06 Simple groups: alternating groups and groups of Lie type
20D05 Finite simple groups and their classification
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20D08 Simple groups: sporadic groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Burgoyne, N; Williamson, C, Semi-simple classes in Chevalley type groups, Pacific J. math., 70, 83-100, (1977) · Zbl 0379.20041
[2] \scN. Burgoyne and C. Williamson, Centralizers of involutions in Chevalley groups, mimeographed notes. · Zbl 0379.20041
[3] Carter, R, Simple groups of Lie type, (1972), Wiley London/New York · Zbl 0248.20015
[4] Carter, R, Conjugacy classes in the Weyl group, () · Zbl 0269.20038
[5] Gorenstein, D, The classification of finite groups 1. simple groups and local analysis, Bull. amer. math. soc., 1, 43-199, (1979) · Zbl 0414.20009
[6] Gorenstein, D, Finite groups, (1968), Harper & Row London/New York · Zbl 0185.05701
[7] \scK. W. Gruenberg and O. Kegel, Unpublished manuscript, 1975.
[8] Gruenberg, K.W; Roggenkamp, K.W, Decomposition of the augmentation ideal and of the relation modules of a finite group, (), 149-166 · Zbl 0313.20004
[9] Higman, G, ()
[10] Iwahori, N, Centralizers of involutions in finite Chevalley groups, () · Zbl 0242.20043
[11] Landrock, P, The non-principal 2-blocks of sporadic simple groups, Comm. algebra, 6, 1865-1891, (1978) · Zbl 0387.20010
[12] Springer, T.A; Steinberg, R, Conjugacy classes, () · Zbl 0249.20024
[13] Steinberg, R, Automorphism of finite linear groups, Canad. J. math., 12, 606-615, (1960) · Zbl 0097.01703
[14] Suzuki, M, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. math., 77, 657-691, (1955) · Zbl 0068.25601
[15] Williams, J.S, A sufficient condition on centralizers for a finite group to contain a proper CCT subgroup, J. algebra, 42, 549-556, (1976) · Zbl 0349.20009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.