Cambern, Michael; Greim, Peter The dual of a space of vector measures. (English) Zbl 0471.46016 Math. Z. 180, 373-378 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 Documents MSC: 46E27 Spaces of measures 28A33 Spaces of measures, convergence of measures 46E40 Spaces of vector- and operator-valued functions 54D30 Compactness Keywords:dual of a space of vector measures; extremally disconnected compact Hausdorff space × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Arens, R.: Operations induced in function classes. Monatsh. Math.55, 1-19 (1951) · Zbl 0042.35601 · doi:10.1007/BF01300644 [2] Behrends, E. et al.:L p-structure in real Banach spaces. Lecture Notes in Mathematics613. Berlin-Heidelberg-New York: Springer 1977 [3] Cambern, M., Greim, P.: The bidual ofC(X, E). Proc. Amer. Math. Soc. (to appear) · Zbl 0487.46017 [4] Diestel, J., Uhl, J.J., Jr.: Vector measures. Mathematical Surveys15. Providence, Rhode Island: American Mathematical Society 1977 [5] Dinculeanu, N.: Vector measures. New York: Pergamon Press 1967 · Zbl 0156.14902 [6] Dunford, N., Schwartz, J.T.: Linear operators, Part I. New York-London: Interscience 1958 · Zbl 0084.10402 [7] Gamelin, T.: Uniform algebras. Englewood Cliffs, N.J.: Prentice-Hall 1969 · Zbl 0213.40401 [8] Gordon, H.: The maximal ideal space of a ring of measurable functions. Amer. J. Math.88, 827-843 (1966) · Zbl 0156.36904 · doi:10.2307/2373081 [9] Kakutani, S.: Concrete representation of abstract (M)-spaces. Ann. of Math. (2)42, 994-1024 (1941) · Zbl 0060.26604 · doi:10.2307/1968778 [10] Kaplan, S.: On the second dual of the space of continuous functions. Trans. Amer. Math. Soc.86, 70-90 (1957) · Zbl 0081.10903 · doi:10.1090/S0002-9947-1957-0090774-3 [11] Mauldin, R.D.: The continuum hypothesis, integration and duals of measure spaces. Illinois J. Math.19, 33-40 (1975) · Zbl 0296.46045 [12] Schaefer, H.H.: Topological vector spaces. Graduate Texts in Mathematics3. New York-Heidelberg-Berlin: Springer 1971 [13] Schaefer, H.H.: Banach lattices and positive operators. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0296.47023 [14] Singer, I.: Linear functionals on the space of continuous mappings of a compact space into a Banach space. (Russian), Rev. Roumaine Math. Pures Appl.2, 301-315 (1957) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.