×

Sample function properties of multi-parameter stable processes. (English) Zbl 0471.60046


MSC:

60G17 Sample path properties
60J65 Brownian motion
60J55 Local time and additive functionals
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adler, R. J., The uniform dimension of the level sets of a Brownian sheet, Ann. of Probab., 6, 509-515 (1978) · Zbl 0378.60028
[2] Berman, S. M., Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc., 137, 277-299 (1969) · Zbl 0184.40801
[3] Berman, S. M., Gaussian sample functions: uniform dimension and Holder conditions nowhere, Nagoya Math. J., 46, 63-86 (1972) · Zbl 0246.60038
[4] Berman, S. M., Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J., 2b3, 69-94 (1973) · Zbl 0264.60024
[5] Bickel, P. J.; Wichura, M. J., Convergence criteria for some multiparameter stochastic processes and some applications, Ann. Math. Statist., 42, 1656-1670 (1971) · Zbl 0265.60011
[6] Boylan, E. S., Local times for a class of Markov processes, Illinois J. Math., 8, 19-39 (1964) · Zbl 0126.33702
[7] Cairoli, R.; Walsh, J. B., Stochastic integrals in the plane, Acta Math., 134, 111-183 (1975) · Zbl 0334.60026
[8] Ciesielski, Z.; Taylor, S. J., First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc., 103, 434-450 (1962) · Zbl 0121.13003
[9] Davydov, Yu. A.; Rozin, A. L., On sojourn times for functions and random processes, Theory Probab. Appl., 23, 633-637 (1978) · Zbl 0422.60056
[10] Getoor, R. K.; Kesten, H., Continuity of local times for Markov processes, Compositio Math., 24, 277-303 (1972) · Zbl 0293.60069
[11] Kesten, H., An iterated logarithm law for local time, Duke Math. J., 32, 447-456 (1965) · Zbl 0132.12701
[12] Jain, N.; Pruitt, W. E., The correct measure function for the graph of a transient stable process, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 9, 131-138 (1968) · Zbl 0273.60040
[13] Lévy, P., Théorie de l’addition des variables aléatoires (1937), Paris: Gauthier-Villars, Paris · JFM 63.0490.04
[14] Müller, D.W.: The continuity of local times of Brownian motion with two-dimensional time. unpublished (1972)
[15] Orey, S.; Pruitt, W. E., Sample functions of the N-parameter Wiener process, Ann. of Probab., 1, 138-163 (1973) · Zbl 0284.60036
[16] Pitt, L. D., Local times for Gaussian vector fields, Indiana Univ. Math. J., 27, 309-330 (1978) · Zbl 0382.60055
[17] Pruitt, W. E.; Taylor, S. J., Sample path properties of processes with stable components, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 12, 167-289 (1969) · Zbl 0181.21103
[18] Pruitt, W. E.; Taylor, S. J., Hausdorff measure properties of the asymmetric Cauchy processes, Ann. of Probab., 5, 608-615 (1977) · Zbl 0371.60049
[19] Pyke, R.; Harding, E. F.; Kendall, D. G., Partial sums of matrix arrays and Brownian sheets, Stochastic Analysis, 331-348 (1972), New York: Wiley, New York
[20] Ray, D., Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion, Trans. Amer. Math. Soc., 106, 436-444 (1963) · Zbl 0119.14602
[21] Rogers, C. A.; Taylor, S. J., Functions continuous and singular with respect to a Hausdorff measure, Mathematika, 8, 1-31 (1961) · Zbl 0145.28701
[22] Shorack, G.; Smythe, R. T., Inequalities for max ¦S_k¦b_k where kεN^r, Proc. Amer. Math. Soc., 54, 331-336 (1976) · Zbl 0327.60036
[23] Straf, M. L., Weak convergence of stochastic processes with several parameters, Proc. Sixth Berkeley Sympos. Math. Statist. Probab. Univ. Calif., 2, 187-221 (1970)
[24] Taylor, S. J., Sample path properties of a transient stable process, J. Math. Mech., 16, 1229-1246 (1967) · Zbl 0178.19301
[25] Tran, L. T., On a problem posed by Orey and Pruitt related to the range of the N-parameter Wiener process in R^d, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 37, 27-33 (1976) · Zbl 0328.60043
[26] Tran, L. T., The Hausdorff dimension of the range of the N-parameter Wiener process, Ann. of Probab., 5, 235-242 (1977) · Zbl 0366.60051
[27] Walsh, J. B., The local time of the Brownian sheet, Astérisque, 52/53, 47-61 (1978)
[28] Zimmerman, G. J., Some sample function properties of the two-parameter Gaussian process, Ann. Math. Statist., 43, 1235-1246 (1972) · Zbl 0244.60032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.