Construction d’une base de fonctions P1 non conforme à divergence nulle dans R3. (French) Zbl 0471.76028


76D05 Navier-Stokes equations for incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI EuDML


[1] 1. M. CROUZEIX et P. A. RAVIART, Conforming and non-conforming finite elementmethodsfor sohing the stationary Stokes équations, R.A.I.R.O., R-3 (1973), pp. 33-76. Zbl0302.65087 MR343661 · Zbl 0302.65087
[2] 2. M. FORTIN, Résolution numérique des équations de Navier-Stokes par des élémentsfinis de type mixte, Rapport de Recherche 184 (LABORIA-INRIA), août 1976.
[3] 3. C. TAYLOR et P. HOOD, A numerical solution of the Navier-Stokes équations using thefinite element technique, Computers and Fluids, 1 (1973), pp. 73-100. Zbl0328.76020 MR339677 · Zbl 0328.76020
[4] 4. M. BERCOVIER, Afamily of finite éléments with pénalisation for the numerical solu-tion of Stokes and Navier-Stokes équations, in Gilchrist (1977). Zbl0383.65065 · Zbl 0383.65065
[5] 5. O.C. ZIENCKIEWICZ and P. N GODBOLE, Viscous incompressible flows with specialréférence to non-newtonian (plastic) fluids, in < Finite Element Method in Flow Problems > , Wiley, New York (1975).
[6] 6. R. TEMAN, Theory and numerical analysis of the Navier-Stokes équations, NorthHolland, Amsterdam (1977). Zbl0383.35057 · Zbl 0383.35057
[7] 7 M. CROUZEIX, Proceedings of Journées < éléments finis > , Université de Rennes (1976).
[8] 8 F. THOMASSET, Numerical solution of the Navier-Stokes équations by finite élémentmethods, VKI Lecture séries, no. 86 (Computational fluid dynamics, March 21-25, 1977).
[9] 9. P. G. CIARLET, The fimte element method for elhptic problems, North Holland (1978). Zbl0383.65058 MR520174 · Zbl 0383.65058
[10] 10. M. BERGER, Géométrie, Cedic/Fernand Nathan Zbl0382.51012 · Zbl 0382.51012
[11] 11. C. GODBILLON, Topologie Algébrique, Herman
[12] 12. S. LANG, Algebra, Addison-Wesley Pubhshing company. Zbl0193.34701 MR197234 · Zbl 0193.34701
[13] 13. F. HECHT, Thèse de 3e cycle, Université de Pans 6 (1980).
[14] 14 C. BERGE, Théorie des Graphes, Dunod
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.