Miller, Arnold W. Some properties of measure and category. (English) Zbl 0472.03040 Trans. Am. Math. Soc. 266, 93-114 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 68 Documents MSC: 03E35 Consistency and independence results 54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets) Keywords:cardinal invariants; measure and category structures of the real line PDFBibTeX XMLCite \textit{A. W. Miller}, Trans. Am. Math. Soc. 266, 93--114 (1981; Zbl 0472.03040) Full Text: DOI References: [1] J. Baumgartner, Set theory notes, Cambridge Summer School, 1978. [2] James E. Baumgartner and Richard Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), no. 3, 271 – 288. · Zbl 0427.03043 · doi:10.1016/0003-4843(79)90010-X [3] Lev Bukowský, Random forcing, Set theory and hierarchy theory, V (Proc. Third Conf., Bierutowice, 1976), Springer, Berlin, 1977, pp. 101 – 117. Lecture Notes in Math., Vol. 619. [4] D. H. Fremlin and S. Shelah, On partitions of the real line, Israel J. Math. 32 (1979), no. 4, 299 – 304. · Zbl 0413.04002 · doi:10.1007/BF02760459 [5] Serge Grigorieff, Combinatorics on ideals and forcing, Ann. Math. Logic 3 (1971), no. 4, 363 – 394. · Zbl 0328.02041 · doi:10.1016/0003-4843(71)90011-8 [6] Stephen H. Hechler, On the existence of certain cofinal subsets of ^{\?}\?, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1974, pp. 155 – 173. [7] Juichi Shinoda, A note on Silver’s extension, Comment. Math. Univ. St. Paul. 22 (1973/74), no. 2, 109 – 111. · Zbl 0279.02048 [8] K. Kunen, ”Toronto talks”, 1975. [9] -, Set theory, North-Holland, Amsterdam, 1981. [10] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. · Zbl 0158.40901 [11] Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151 – 169. · Zbl 0357.28003 · doi:10.1007/BF02392416 [12] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59 – 111. · Zbl 0369.02041 · doi:10.1016/0003-4843(77)90006-7 [13] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), no. 2, 143 – 178. · Zbl 0222.02075 · doi:10.1016/0003-4843(70)90009-4 [14] Arnold W. Miller, Covering 2^{\?} with \?\(_{1}\) disjoint closed sets, The Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1978), Stud. Logic Foundations Math., vol. 101, North-Holland, Amsterdam-New York, 1980, pp. 415 – 421. [15] Arnold W. Miller, On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), no. 3, 233 – 267. · Zbl 0415.03038 · doi:10.1016/0003-4843(79)90003-2 [16] Arnold W. Miller, The Baire category theorem and cardinals of countable cofinality, J. Symbolic Logic 47 (1982), no. 2, 275 – 288. · Zbl 0487.03026 · doi:10.2307/2273142 [17] Jan Mycielski, Algebraic independence and measure, Fund. Math. 61 (1967), 165 – 169. · Zbl 0183.02103 [18] John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. · Zbl 0435.28011 [19] F. Rothberger, Eine Aquivalenz zwischen der Kontinuumhypothese under der Existenz der Lusinschen und Sierpińskischen Mengen, Fund. Math. 30 (1938), 215-217. · JFM 64.0035.03 [20] Fritz Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété \?, Proc. Cambridge Philos. Soc. 37 (1941), 109 – 126 (French). · Zbl 0027.30101 [21] -, Sur un ensemble toujours de première catégorie qui est déprourvu de la propriété \( \lambda \), Fund. Math. 32 (1939), 294-300. · JFM 65.0187.03 [22] Fritz Rothberger, On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29 – 46. · Zbl 0032.33702 [23] Fritz Rothberger, On families of real functions with a denumerable base, Ann. of Math. (2) 45 (1944), 397 – 406. · Zbl 0061.09507 · doi:10.2307/1969184 [24] -, Eine Verschärfung der Eigenschaft \( C\), Fund. Math. 30 (1938), 50-55. [25] Handbook of mathematical logic, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra; Studies in Logic and the Foundations of Mathematics, Vol. 90. [26] Gerald E. Sacks, Forcing with perfect closed sets, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 331 – 355. [27] J. R. Shoenfield, Unramified forcing, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 357 – 381. [28] Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1 – 56. · Zbl 0207.00905 · doi:10.2307/1970696 [29] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s problem, Ann. of Math. (2) 94 (1971), 201 – 245. · Zbl 0244.02023 · doi:10.2307/1970860 [30] John Truss, Sets having calibre ℵ\(_{1}\), Logic Colloquium 76 (Oxford, 1976) North-Holland, Amsterdam, 1977, pp. 595 – 612. Studies in Logic and Found. Math., Vol. 87. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.