On the factorization of p-adic L-series. (English) Zbl 0472.12011


11R42 Zeta functions and \(L\)-functions of number fields
11S40 Zeta functions and \(L\)-functions
11R11 Quadratic extensions
Full Text: DOI EuDML


[1] Cassou-Noguès, P.:p-adicL-functions for elliptic curves with complex multiplication. Thesis. Bordeaux 1978
[2] Ferrero, B., Greenberg, R.: On the behavior ofp-adicL-functions ats=0. Invent. Math.50, 91-102 (1978) · Zbl 0441.12003
[3] Gross, B., Koblitz, N.: Gauss sums and thep-adic ?-function. Ann. of Math.109, 569-581 (1979) · Zbl 0406.12010
[4] Iwasawa, K.: Lectures onp-adicL-functions. Annals of Math. Studies 74, Princeton University Press 1972
[5] Katz, N.:p-adic interpolation of real analytic Eisenstein series. Ann. of Math.104, 459-571 (1976) · Zbl 0354.14007
[6] Katz, N.:p-adicL-functions for CM fields. Invent. Math.49, 199-297 (1978) · Zbl 0417.12003
[7] Kubert, D., Lang, S.: Modular units inside cyclotomic units. Bull. Math. Soc. France 1979 · Zbl 0409.12007
[8] Kubota, T., Leopoldt, H.W.: Einep-adische Theorie der, Zeta-Werte I. J. Reine Angew. Math.214/215, 328-339 (1964) · Zbl 0186.09103
[9] Manin, J., Vishik, S.:p-adic Hecke series for quadratic imaginary fields. Math. Sbornik V95, 137 (1974) · Zbl 0329.12016
[10] Robert, G.: Unités élliptiques. Bull. Soc. Math. France Supplément. Mémoire No. 36, 1973
[11] Serre, J-P.: Sur le résidu de la fonction zêtap-adique d’un corps de nombres. pp. 183-188. C. R. Acad. Sci. Paris 1978
[12] Stark, H.M.: Class fields and modular forms of weight one. Lect. Notes Math.601, pp. 277-287. Berlin, Heidelberg New York, 1977 · Zbl 0363.12010
[13] Vishik, S.: Thep-adic zeta function of an imaginary quadratic field and the Leopoldt regulator. Math. Sbornik Tom102, 144 (1977) · Zbl 0443.12007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.