Panferov, B. A. Nilpotent groups with lower central factors of minimal ranks. (English. Russian original) Zbl 0472.20013 Algebra Logic 19, 455-458 (1981); translation from Algebra Logika 19, 701-706 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 2 Documents MSC: 20F18 Nilpotent groups 20F14 Derived series, central series, and generalizations for groups 20D15 Finite nilpotent groups, \(p\)-groups Keywords:lower central series; nilpotent group of maximal class; derived length; nilpotent Lie algebras Citations:Zbl 0353.20020 PDF BibTeX XML Cite \textit{B. A. Panferov}, Algebra Logic 19, 455--458 (1981; Zbl 0472.20013); translation from Algebra Logika 19, 701--706 (1980) Full Text: DOI EuDML OpenURL References: [1] M. Hall, Jr., The Theory of Groups, MacMillan, New York (1959). [2] N. Jacobson, Lie Algebras, Interscience, New York–London (1962). · Zbl 0121.27504 [3] A. I. Maltsev, ”A class of homogeneous spaces,” Izv. Akad. Nauk SSSR, Ser. Mat.,13, No. 1, 9–32 (1949). · Zbl 0034.01701 [4] A. I. Mal’tsev, ”Nilpotent torsion-free groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,13, No. 3, 201–212 (1949). [5] N. Blackburn, ”On a special class of p-groups,” Acta Math.,100, 45–92 (1958). · Zbl 0083.24802 [6] C. R. Leedham-Green and S. McKay, ”On p-groups of maximal class. I,” Q. J. Math.,27, No. 107, 297–311 (1976). · Zbl 0353.20020 [7] C. R. Leedham-Green and S. McKay, ”On p-groups of maximal class. II,” Q. J. Math.,29, No. 114, 175–186 (1978). · Zbl 0383.20016 [8] C. R. Leedham-Green and S. McKay, ”On p-groups of maximal class. III,” Q. J. Math.,29, No. 115 (1978). · Zbl 0403.20013 [9] M. Lazard, ”Sur les groupes nilpotents et les anneaux de Lie,” Ann. Sci. Ecole Norm. Super., Ser. 3,71, 101–190 (1954). · Zbl 0055.25103 [10] M. Lazard, ”Quelques calculs concernant la formule de Hausdorff,” Bull. Soc. Math. France,91, 435–451 (1963). · Zbl 0117.02003 [11] J. L. Alperin, ”Automorphisms of solvable groups,” Proc. Am. Math. Soc.,13, No. 2, 175–180 (1962). · Zbl 0104.02801 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.