zbMATH — the first resource for mathematics

On the asymptotic behaviour of the solutions of nonliner delay differential system. (English) Zbl 0472.34045
34K25 Asymptotic theory of functional-differential equations
Full Text: EuDML
[1] BAUER F., WONG J. S. W.: On asymptotic behavior of perturbed linear systems. J. Diff. Equat., 6, 142-153. · Zbl 0201.11703
[2] CESARI L.: Asymptotic behavior and stability problems in ordinary differential equations. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. · Zbl 0082.07602
[3] ELŠGOLC, LE. E., NORKIN S. B.: Vedenie v teoriju differenciaľnych uravnenij s otklonjajuščímsja argumentom. ”Nauka” 1971, Moskva.
[4] FUTÁK J.: On existence and asymptotic behavior of solutions of nonlinear delay differential system. Archiv. Math., 1, 1978, Brno.
[5] HALLAM T. G., HEIDEL J. W.: The asymptotic manifolds of a perturbed linear system of differential equations. Trans. Amer. Math. Soc. 149, 1970, 233-241. · Zbl 0186.41502
[6] HOSAM EL-DIN: On the asymptotic properties of solutions of nonlinear systems. Arch. Math., 4, 1976, 179-190. · Zbl 0353.34049
[7] KATO J.: The asymptotic equivalence of systems of functional differential equations. J. Diff. Equat. 1, 1965, 306-332. · Zbl 0151.10202
[8] ŠVEC M.: Asymptotic relationship between solutions of two systems of differential equations. Czechosl. Math. J., 24 (99) 1974, 44-58. · Zbl 0322.34037
[9] ŠVEC M.: Some properties of functional differential equations. Bolletino U.M.I., (4) 11, Suppl. fasc. 3, 1975, 467-477.
[10] TRENCH W. F.: Asymptotic behavior of solutions of \(Lu = g(t, u, ..., u^{(k-1)}). J. Diff. Equat. 11, 1972, 38-48.\) · Zbl 0235.34083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.