×

On the bounded solutions of a functional equation. (English) Zbl 0472.39003


MSC:

39B99 Functional equations and inequalities
94A17 Measures of information, entropy
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. Aczél undZ. Daróczy, Characterisierung der Entropien positiver Ordnung und der Shannonschen Entropie,Acta Math. Acad. Sci. Hungar.,14 (1963), 95–121. · Zbl 0138.14904
[2] J. Aczél andZ. Daróczy,On measures of information and their characterizations, Academic Press (New York-San Francisco-London, 1975).
[3] Z. Daróczy, On the measurable solutions of a functional equation,Acta Math. Acad. Sci. Hungar.,22 (1971), 11–14. · Zbl 0236.39008
[4] Z. Daróczy, Über die Characterisierung der Shannonschen Entropie,Proc. Colloq. Information Theory (Debrecen, 1967) 1, 135–139. J. Bolyai Math. Soc. (Budapest, 1968).
[5] Z. Daróczy andA. Járai, On the measurable solution of a functional equation arising in information theory,Acta Math. Acad. Sci. Hungar.,34 (1979), 105–116. · Zbl 0424.39002
[6] Z. Daróczy undL. Losonczi, Über die Erweiterung der auf einer Punktmenge additiven Funktionen,Publ. Math. Debrecen,14 (1967), 239–245. · Zbl 0175.15305
[7] G. Diderrich,Boundedness on a set of positive measure and the fundamental equation of information, University of Waterloo Preprint, 1977. · Zbl 0616.94001
[8] L. Losonczi, A characterization of entropies of degree {\(\alpha\)},Metrika (to appear). · Zbl 0469.94005
[9] O. Zariski andP. Samuel,Commutative Algebra, D. Van Nostrand (Princeton, 1958).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.