×

Eigenvalue approximation by mixed and hybrid methods. (English) Zbl 0472.65080


MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
65N15 Error bounds for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/1971), 322 – 333. · Zbl 0214.42001
[2] I. Babuška & A. Aziz, ”Survey lectures on the mathematical foundations of the finite element method” in The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations , Academic Press, New York, 1973, pp. 5-359.
[3] I. Babuška and J. E. Osborn, Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients, Math. Comp. 32 (1978), no. 144, 991 – 1023. · Zbl 0418.65053
[4] J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525 – 549. · Zbl 0305.65064
[5] I. Babuška, J. Osborn, and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), no. 152, 1039 – 1062. · Zbl 0472.65083
[6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129 – 151 (English, with loose French summary). · Zbl 0338.90047
[7] F. Brezzi, Sur la méthode des éléments finis hybrides pour le problème biharmonique, Numer. Math. 24 (1975), no. 2, 103 – 131 (French). · Zbl 0316.65029
[8] F. Brezzi and P.-A. Raviart, Mixed finite element methods for 4th order elliptic equations, Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976) Academic Press, London, 1977, pp. 33 – 56. · Zbl 0434.65085
[9] C. Canuto, Eigenvalue approximations by mixed methods, RAIRO Anal. Numér. 12 (1978), no. 1, 27 – 50, iii (English, with French summary). · Zbl 0434.65032
[10] P. G. Ciarlet and P.-A. Raviart, A mixed finite element method for the biharmonic equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 125 – 145. Publication No. 33. · Zbl 0337.65058
[11] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33 – 75. · Zbl 0302.65087
[12] Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978), no. 2, 97 – 112, iii (English, with French summary). Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. II. Error estimates for the Galerkin method, RAIRO Anal. Numér. 12 (1978), no. 2, 113 – 119, iii (English, with French summary). · Zbl 0393.65024
[13] J. Descloux, N. Nassif & J. Rappaz, Various Results on Spectral Approximation, Rapport du Dept. de Math. de l’Ecole Polytechnique Fédérale de Lausanne, Suisse, 1977. · Zbl 0361.65052
[14] Richard S. Falk, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal. 15 (1978), no. 3, 556 – 567. · Zbl 0383.65059
[15] R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), no. 3, 249 – 277 (English, with French summary). · Zbl 0467.65062
[16] George J. Fix, Eigenvalue approximation by the finite element method, Advances in Math. 10 (1973), 300 – 316. · Zbl 0257.65086
[17] Michel Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér. 11 (1977), no. 4, 341 – 354, iii (English, with French summary). · Zbl 0373.65055
[18] V. Girault and P.-A. Raviart, An analysis of a mixed finite element method for the Navier-Stokes equations, Numer. Math. 33 (1979), no. 3, 235 – 271. · Zbl 0396.65070
[19] R. Glowinski, Approximations externes, par éléments finis de Lagrange d’ordre un et deux, du problème de Dirichlet pour l’opérateur biharmonique. Méthode itérative de résolution des problèmes approchés, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 123 – 171 (French).
[20] L. Herrmann, ”Finite element bending analysis for plates,” J. Eng. Mech., Div. ASCE EM5, v. 93, 1967, pp. 49-83.
[21] L. Herrmann, ”A bending analysis for plates,” Proc. Conf. on Matrix Methods in Structural Mechanics, AFFDL-TR-66-88, pp. 577-604.
[22] Kazuo Ishihara, Convergence of the finite element method applied to the eigenvalue problem \Delta \?+\?\?=0, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 1, 47 – 60. · Zbl 0364.65080
[23] Kazuo Ishihara, The buckling of plates by the mixed finite element method, Mem. Numer. Math. 5 (1978), 73 – 82. · Zbl 0435.73078
[24] Kazuo Ishihara, A mixed finite element method for the biharmonic eigenvalue problems of plate bending, Publ. Res. Inst. Math. Sci. 14 (1978), no. 2, 399 – 414. · Zbl 0389.73075
[25] Claes Johnson, On the convergence of a mixed finite-element method for plate bending problems, Numer. Math. 21 (1973), 43 – 62. · Zbl 0264.65070
[26] William G. Kolata, Approximation in variationally posed eigenvalue problems, Numer. Math. 29 (1977/78), no. 2, 159 – 171. · Zbl 0352.65059
[27] B. Mercier, Numerical solution of the biharmonic problem by mixed finite elements of class \?\(^{0}\), Boll. Un. Mat. Ital. (4) 10 (1974), 133 – 149 (English, with Italian summary). · Zbl 0332.65058
[28] B. Mercier & J. Rappaz, Eigenvalue approximation via non-conforming and hybrid finite element methods, Rapport du Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France, 1978.
[29] Tetsuhiko Miyoshi, A finite element method for the solutions of fourth order partial differential equations, Kumamoto J. Sci. (Math.) 9 (1972/73), 87 – 116. · Zbl 0249.35007
[30] S. Nemat-Nasser, ”General variational methods for elastic waves in composites,” J. Elasticity, v. 2, 1972, pp. 73-90.
[31] S. Nemat-Nasser, ”Harmonic waves in layered composites,” J. Appl. Mech., v. 39, 1972, pp. 850-852.
[32] S. Nemat-Nasser, General Variational Principles in Nonlinear and Linear Elasticity with Applications. Mechanics Today 1, Pergamon Press, New York, 1974, pp. 214-261. · Zbl 0305.73007
[33] T. Oden, ”Some contributions to the mathematical theory of mixed finite element approximations,” in Theory and Practice in Finite Element Structural Analysis, Univ. of Tokyo Press, Tokyo, 1973, pp. 3-23.
[34] T. Oden, ”Some contributions to the mathematical theory of mixed finite element approximations,” in Theory and Practice in Finite Element Structural Analysis, Univ. of Tokyo Press, Tokyo, 1973, pp. 3-23.
[35] J. T. Oden and J. N. Reddy, On mixed finite element approximations, SIAM J. Numer. Anal. 13 (1976), no. 3, 393 – 404. · Zbl 0337.65056
[36] John E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975), 712 – 725. · Zbl 0315.35068
[37] John E. Osborn, Approximation of the eigenvalues of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations, SIAM J. Numer. Anal. 13 (1976), no. 2, 185 – 197. · Zbl 0334.76010
[38] R. Vichnevetsky and R. S. Stepleman , Advances in computer methods for partial differential equations. III, International Association for Mathematics and Computers in Simulation (IMACS), New Brunswick, N.J., 1979. · Zbl 0477.65067
[39] Rolf Rannacher, On nonconforming and mixed finite element method for plate bending problems. The linear case, RAIRO Anal. Numér. 13 (1979), no. 4, 369 – 387 (English, with French summary). · Zbl 0425.35042
[40] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292 – 315. Lecture Notes in Math., Vol. 606.
[41] P.-A. Raviart and J. M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comp. 31 (1977), no. 138, 391 – 413. · Zbl 0364.65082
[42] Reinhard Scholz, Approximation von Sattelpunkten mit finiten Elementen, Finite Elemente (Tagung, Univ. Bonn, Bonn, 1975) Inst. Angew. Math., Univ. Bonn, Bonn, 1976, pp. 53 – 66. Bonn. Math. Schrift., No. 89 (German, with English summary). · Zbl 0359.65096
[43] Reinhard Scholz, A mixed method for 4th order problems using linear finite elements, RAIRO Anal. Numér. 12 (1978), no. 1, 85 – 90, iii (English, with French summary). · Zbl 0382.65059
[44] J. M. Thomas, Sur l’Analyse Numérique des Méthodes d’Eléments Finis Hybrides et Mixtes, Thesis, Univ. P & M Curie, Paris, 1977.
[45] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.