×

Functions of bounded deformation. (English) Zbl 0472.73031


MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
46E40 Spaces of vector- and operator-valued functions
49Q05 Minimal surfaces and optimization
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Deny, J., & J.L. Lions, Les espaces du type de Beppo-Levi. Ann. Inst. Fourier, 5, 305–370 (1954). · Zbl 0065.09903
[2] Ekeland, I., & R. Temam, Convex Analysis and Variational Problems. Amsterdam: North-Holland 1976. · Zbl 0322.90046
[3] Gagliardo, E., Caratterizzazioni delle trace sulla frontiera relative alcune classi di funzioni in n variabili. Rend. Semin. Mat. Padova, 27, 284–305 (1957). · Zbl 0087.10902
[4] Kohn, R., Ph.D. thesis, Princeton University (1979).
[5] Lichnewsky, A., Sur un probléme intervenant dans l’étude de la plasticité. C.R. Acad. Sc. Paris, 287, 1069–1072 (1978). · Zbl 0406.49001
[6] Matthies, H., G. Strang, & E. Christiansen, The saddle point of a differential program, in ”Energy methods in finite element analysis,” volume dedicated to Professor Fraeijs de Veubeke; Glowinski, R., Rodin, E., Zienkiewicz, O.C., eds. New York: John Wiley 1979.
[7] Miranda, M., Comportamento delle successioni convergenti di frontiere minimali. Rend. Semin. Univ. Padova, 238–257 (1967) · Zbl 0154.37102
[8] Moreau, J.J., Champs et distributions de tenseurs déformation sur un ouvert de connexité quelconque. Seminaire d’Analyse Convexe, Univ. de Montpellier, 6 (1976). · Zbl 0362.46029
[9] Paris, L., Etude de la régularité d’un champ de vecteurs à partir de son tenseur déformation. Seminaire d’Analyse Convexe, Univ. de Montpellier, 12 (1976).
[10] Strang, G., A family of model problems in plasticity. Proc. Symp. Comp. Meth. in Appl. Sc., R. Glowinski and J.L. Lions, ed., Springer Lecture Notes 704, 292–308 (1979). · Zbl 0435.73033
[11] Strang, G., A minimax problem in plasticity theory, Functional Analysis and Numerical Analysis, M.Z. Nashed, ed., Springer Lecture Notes 701, 319–333 (1979).
[12] Strang, G., H. Matthies, & R. Temam, Mathematical and computational methods in plasticity, Proceedings of IUTAM Conference on Variational Methods in the Mechanics of Solids, Evanston (1978), (to be published).
[13] Strauss, M.J., Variations of Korn’s and Sobolev’s inequalities. Berkeley symposium on partial differential equations, A.M.S. Symposia Vol. 23 (1971).
[14] Suquet, P., Existence et régularité des solutions des équations de la plasticité parfaite. Thèse de 3eme Cycle, Université de Paris VI, (1978), et C.R. Acad. Sc. Paris, 286, Ser. D, 1201–1204 (1978). · Zbl 0378.35057
[15] Temam, R., Mathematical problems in plasticity theory. Proceedings of Symposium on Complementarity Problems and Variational Inequalities. Erice, Sicily, (1978). Cottle, R.W., Gionnessi, F., Lions, J.L., eds. New York: John Wiley 1980. · Zbl 0494.73030
[16] Temam, R., & G. Strang, Existence de solutions relaxées pour les équations de la plasticité: Etude d’un espace fonctionnel. C.R. Acad. Sc. Paris, 287, 515–518 (1978). · Zbl 0404.73026
[17] Temam, R., & G. Strang, Duality and relaxation in plasticity. J. de Mécanique, 19, 1–35 (1980). · Zbl 0465.73033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.